ntp: Add timekeeper ID arguments to public functions

In preparation for supporting auxiliary POSIX clocks, add a timekeeper ID
to the relevant functions.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20250519083026.032425931@linutronix.de
This commit is contained in:
Thomas Gleixner
2025-05-19 10:33:22 +02:00
parent 8515714b0f
commit 5ffa25f573
3 changed files with 30 additions and 26 deletions

View File

@@ -351,33 +351,38 @@ static void __ntp_clear(struct ntp_data *ntpdata)
/**
* ntp_clear - Clears the NTP state variables
* @tkid: Timekeeper ID to be able to select proper ntp data array member
*/
void ntp_clear(void)
void ntp_clear(unsigned int tkid)
{
__ntp_clear(&tk_ntp_data[TIMEKEEPER_CORE]);
__ntp_clear(&tk_ntp_data[tkid]);
}
u64 ntp_tick_length(void)
u64 ntp_tick_length(unsigned int tkid)
{
return tk_ntp_data[TIMEKEEPER_CORE].tick_length;
return tk_ntp_data[tkid].tick_length;
}
/**
* ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
* @tkid: Timekeeper ID
*
* Provides the time of the next leapsecond against CLOCK_REALTIME in
* a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
* Returns: For @tkid == TIMEKEEPER_CORE this provides the time of the next
* leap second against CLOCK_REALTIME in a ktime_t format if a
* leap second is pending. KTIME_MAX otherwise.
*/
ktime_t ntp_get_next_leap(void)
ktime_t ntp_get_next_leap(unsigned int tkid)
{
struct ntp_data *ntpdata = &tk_ntp_data[TIMEKEEPER_CORE];
ktime_t ret;
if (tkid != TIMEKEEPER_CORE)
return KTIME_MAX;
if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS))
return ktime_set(ntpdata->ntp_next_leap_sec, 0);
ret = KTIME_MAX;
return ret;
return KTIME_MAX;
}
/*
@@ -390,9 +395,9 @@ ktime_t ntp_get_next_leap(void)
*
* Also handles leap second processing, and returns leap offset
*/
int second_overflow(time64_t secs)
int second_overflow(unsigned int tkid, time64_t secs)
{
struct ntp_data *ntpdata = &tk_ntp_data[TIMEKEEPER_CORE];
struct ntp_data *ntpdata = &tk_ntp_data[tkid];
s64 delta;
int leap = 0;
s32 rem;
@@ -762,10 +767,10 @@ static inline void process_adjtimex_modes(struct ntp_data *ntpdata, const struct
* adjtimex() mainly allows reading (and writing, if superuser) of
* kernel time-keeping variables. used by xntpd.
*/
int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
int __do_adjtimex(unsigned int tkid, struct __kernel_timex *txc, const struct timespec64 *ts,
s32 *time_tai, struct audit_ntp_data *ad)
{
struct ntp_data *ntpdata = &tk_ntp_data[TIMEKEEPER_CORE];
struct ntp_data *ntpdata = &tk_ntp_data[tkid];
int result;
if (txc->modes & ADJ_ADJTIME) {

View File

@@ -3,13 +3,12 @@
#define _LINUX_NTP_INTERNAL_H
extern void ntp_init(void);
extern void ntp_clear(void);
extern void ntp_clear(unsigned int tkid);
/* Returns how long ticks are at present, in ns / 2^NTP_SCALE_SHIFT. */
extern u64 ntp_tick_length(void);
extern ktime_t ntp_get_next_leap(void);
extern int second_overflow(time64_t secs);
extern int __do_adjtimex(struct __kernel_timex *txc,
const struct timespec64 *ts,
extern u64 ntp_tick_length(unsigned int tkid);
extern ktime_t ntp_get_next_leap(unsigned int tkid);
extern int second_overflow(unsigned int tkid, time64_t secs);
extern int __do_adjtimex(unsigned int tkid, struct __kernel_timex *txc, const struct timespec64 *ts,
s32 *time_tai, struct audit_ntp_data *ad);
extern void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts);

View File

@@ -601,7 +601,7 @@ EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
*/
static inline void tk_update_leap_state(struct timekeeper *tk)
{
tk->next_leap_ktime = ntp_get_next_leap();
tk->next_leap_ktime = ntp_get_next_leap(tk->id);
if (tk->next_leap_ktime != KTIME_MAX)
/* Convert to monotonic time */
tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
@@ -678,7 +678,7 @@ static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int act
if (action & TK_CLEAR_NTP) {
tk->ntp_error = 0;
ntp_clear();
ntp_clear(tk->id);
}
tk_update_leap_state(tk);
@@ -2049,7 +2049,7 @@ static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
*/
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
u64 ntp_tl = ntp_tick_length();
u64 ntp_tl = ntp_tick_length(tk->id);
u32 mult;
/*
@@ -2130,7 +2130,7 @@ static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
}
/* Figure out if its a leap sec and apply if needed */
leap = second_overflow(tk->xtime_sec);
leap = second_overflow(tk->id, tk->xtime_sec);
if (unlikely(leap)) {
struct timespec64 ts;
@@ -2227,7 +2227,7 @@ static bool __timekeeping_advance(enum timekeeping_adv_mode mode)
shift = ilog2(offset) - ilog2(tk->cycle_interval);
shift = max(0, shift);
/* Bound shift to one less than what overflows tick_length */
maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
maxshift = (64 - (ilog2(ntp_tick_length(tk->id)) + 1)) - 1;
shift = min(shift, maxshift);
while (offset >= tk->cycle_interval) {
offset = logarithmic_accumulation(tk, offset, shift, &clock_set);
@@ -2586,7 +2586,7 @@ int do_adjtimex(struct __kernel_timex *txc)
}
orig_tai = tai = tks->tai_offset;
ret = __do_adjtimex(txc, &ts, &tai, &ad);
ret = __do_adjtimex(tks->id, txc, &ts, &tai, &ad);
if (tai != orig_tai) {
__timekeeping_set_tai_offset(tks, tai);