Files
apple-foundationdb/fdbrpc/CoroTests.cpp
Jingyu Zhou 2d2a2144f4 Update copyright years to 2013-2026 (#12653)
No functional changes.
2026-01-22 10:49:41 -08:00

1964 lines
49 KiB
C++

/*
* CoroTests.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2026 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flow/UnitTest.h"
#include "flow/IAsyncFile.h"
#include "fdbrpc/fdbrpc.h"
#include "flow/TLSConfig.actor.h"
#include <sstream>
#include <cstdint>
#include <ranges>
#include <iterator>
#include <fmt/base.h>
#include <fmt/format.h>
void forceLinkCoroTests() {}
using namespace std::literals::string_literals;
TEST_CASE("/flow/coro/buggifiedDelay") {
if (FLOW_KNOBS->MAX_BUGGIFIED_DELAY == 0) {
co_return;
}
loop {
double x = deterministicRandom()->random01();
int last = 0;
Future<Void> f1 = map(delay(x), [last = &last](const Void&) {
*last = 1;
return Void();
});
Future<Void> f2 = map(delay(x), [last = &last](const Void&) {
*last = 2;
return Void();
});
co_await (f1 && f2);
if (last == 1) {
CODE_PROBE(true, "Delays can become ready out of order", probe::decoration::rare);
co_return;
}
}
}
template <class T, class Func, class ErrFunc, class CallbackType>
class LambdaCallback final : public CallbackType, public FastAllocated<LambdaCallback<T, Func, ErrFunc, CallbackType>> {
Func func;
ErrFunc errFunc;
void fire(T const& t) override {
CallbackType::remove();
func(t);
delete this;
}
void fire(T&& t) override {
CallbackType::remove();
func(std::move(t));
delete this;
}
void error(Error e) override {
CallbackType::remove();
errFunc(e);
delete this;
}
public:
LambdaCallback(Func&& f, ErrFunc&& e) : func(std::move(f)), errFunc(std::move(e)) {}
};
template <class T, class Func, class ErrFunc>
void onReady(Future<T>&& f, Func&& func, ErrFunc&& errFunc) {
if (f.isReady()) {
if (f.isError())
errFunc(f.getError());
else
func(f.get());
} else
f.addCallbackAndClear(new LambdaCallback<T, Func, ErrFunc, Callback<T>>(std::move(func), std::move(errFunc)));
}
template <class T, class Func, class ErrFunc>
void onReady(FutureStream<T>&& f, Func&& func, ErrFunc&& errFunc) {
if (f.isReady()) {
if (f.isError())
errFunc(f.getError());
else
func(f.pop());
} else
f.addCallbackAndClear(
new LambdaCallback<T, Func, ErrFunc, SingleCallback<T>>(std::move(func), std::move(errFunc)));
}
namespace {
void emptyVoidActor() {}
Future<Void> emptyActor() {
return Void();
}
Future<Void> oneWaitVoidActor(Uncancellable, Future<Void> f) {
co_await f;
co_return;
}
Future<Void> oneWaitActor(Future<Void> f) {
co_return co_await f;
}
Future<Void> g_cheese;
Future<Void> cheeseWaitActor() {
co_await g_cheese;
co_return;
}
void trivialVoidActor(int* result) {
*result = 1;
}
Future<int> return42Actor() {
return 42;
}
Future<Void> voidWaitActor(Uncancellable, Future<int> in, int* result) {
int i = co_await in;
*result = i;
}
Future<int> addOneActor(Future<int> in) {
co_return (co_await in) + 1;
}
Future<Void> chooseTwoActor(Future<Void> f, Future<Void> g) {
co_return co_await Choose().When(f, [](const Void&) {}).When(g, [](const Void&) {}).run();
}
Future<int> consumeOneActor(FutureStream<int> in) {
int i = co_await in;
co_return i;
}
Future<int> sumActor(FutureStream<int> in) {
int total = 0;
try {
loop {
int i = co_await in;
total += i;
}
} catch (Error& e) {
if (e.code() != error_code_end_of_stream)
throw;
}
co_return total;
}
template <class T>
Future<T> templateActor(T t) {
return t;
}
// bool expectActorCount(int x) { return actorCount == x; }
bool expectActorCount(int) {
return true;
}
struct YieldMockNetwork final : INetwork, ReferenceCounted<YieldMockNetwork> {
int ticks;
Promise<Void> nextTick;
int nextYield;
INetwork* baseNetwork;
flowGlobalType global(int id) const override { return baseNetwork->global(id); }
void setGlobal(size_t id, flowGlobalType v) override {
baseNetwork->setGlobal(id, v);
return;
}
YieldMockNetwork() : ticks(0), nextYield(0) {
baseNetwork = g_network;
g_network = this;
}
~YieldMockNetwork() { g_network = baseNetwork; }
void tick() {
ticks++;
Promise<Void> t;
t.swap(nextTick);
t.send(Void());
}
Future<class Void> delay(double seconds, TaskPriority taskID) override { return nextTick.getFuture(); }
Future<class Void> orderedDelay(double seconds, TaskPriority taskID) override { return nextTick.getFuture(); }
Future<class Void> yield(TaskPriority taskID) override {
if (check_yield(taskID))
return delay(0, taskID);
return Void();
}
bool check_yield(TaskPriority taskID) override {
if (nextYield > 0)
--nextYield;
return nextYield == 0;
}
// Delegate everything else. TODO: Make a base class NetworkWrapper for delegating everything in INetwork
TaskPriority getCurrentTask() const override { return baseNetwork->getCurrentTask(); }
void setCurrentTask(TaskPriority taskID) override { baseNetwork->setCurrentTask(taskID); }
double now() const override { return baseNetwork->now(); }
double timer() override { return baseNetwork->timer(); }
double timer_monotonic() override { return baseNetwork->timer_monotonic(); }
void stop() override { return baseNetwork->stop(); }
void addStopCallback(std::function<void()> fn) override {
ASSERT(false);
return;
}
bool isSimulated() const override { return baseNetwork->isSimulated(); }
void onMainThread(Promise<Void>&& signal, TaskPriority taskID) override {
return baseNetwork->onMainThread(std::move(signal), taskID);
}
bool isOnMainThread() const override { return baseNetwork->isOnMainThread(); }
THREAD_HANDLE startThread(THREAD_FUNC_RETURN (*func)(void*), void* arg, int stackSize, const char* name) override {
return baseNetwork->startThread(func, arg, stackSize, name);
}
Future<Reference<class IAsyncFile>> open(std::string filename, int64_t flags, int64_t mode) {
return IAsyncFileSystem::filesystem()->open(filename, flags, mode);
}
Future<Void> deleteFile(std::string filename, bool mustBeDurable) {
return IAsyncFileSystem::filesystem()->deleteFile(filename, mustBeDurable);
}
void run() override { return baseNetwork->run(); }
bool checkRunnable() override { return baseNetwork->checkRunnable(); }
void getDiskBytes(std::string const& directory, int64_t& free, int64_t& total) override {
return baseNetwork->getDiskBytes(directory, free, total);
}
bool isAddressOnThisHost(NetworkAddress const& addr) const override {
return baseNetwork->isAddressOnThisHost(addr);
}
const TLSConfig& getTLSConfig() const override {
static TLSConfig emptyConfig;
return emptyConfig;
}
#ifdef ENABLE_SAMPLING
ActorLineageSet& getActorLineageSet() override { throw std::exception(); }
#endif
ProtocolVersion protocolVersion() const override { return baseNetwork->protocolVersion(); }
void _swiftEnqueue(void* task) override { baseNetwork->_swiftEnqueue(task); }
};
Future<Void> testCancelled(bool* exits, Future<Void> f) {
Error err = success();
try {
co_await Future<Void>(Never());
} catch (Error& e) {
err = e;
}
try {
co_await Future<Void>(Never());
} catch (Error& e) {
*exits = true;
throw;
}
if (err.code() != error_code_success) {
throw err;
}
}
} // namespace
TEST_CASE("/flow/coro/cancel1") {
bool exits = false;
Promise<Void> p;
Future<Void> test = testCancelled(&exits, p.getFuture());
ASSERT(p.getPromiseReferenceCount() == 1 && p.getFutureReferenceCount() == 1);
test.cancel();
ASSERT(exits);
ASSERT(test.getPromiseReferenceCount() == 0 && test.getFutureReferenceCount() == 1 && test.isReady() &&
test.isError() && test.getError().code() == error_code_actor_cancelled);
ASSERT(p.getPromiseReferenceCount() == 1 && p.getFutureReferenceCount() == 0);
return Void();
}
namespace {
Future<Void> noteCancel(int* cancelled) {
*cancelled = 0;
try {
co_await Future<Void>(Never());
throw internal_error();
} catch (...) {
printf("Cancelled!\n");
*cancelled = 1;
throw;
}
}
} // namespace
TEST_CASE("/flow/coro/cancel2") {
int c1 = 0, c2 = 0, c3 = 0;
Future<Void> cf = noteCancel(&c1);
ASSERT(c1 == 0);
cf = Future<Void>();
ASSERT(c1 == 1);
cf = noteCancel(&c2) && noteCancel(&c3);
ASSERT(c2 == 0 && c3 == 0);
cf = Future<Void>();
ASSERT(c2 == 1 && c3 == 1);
return Void();
}
TEST_CASE("/flow/coro/trivial_actors") {
ASSERT(expectActorCount(0));
int result = 0;
trivialVoidActor(&result);
ASSERT(result == 1);
Future<int> f = return42Actor();
ASSERT(f.isReady() && !f.isError() && f.get() == 42 && f.getFutureReferenceCount() == 1 &&
f.getPromiseReferenceCount() == 0);
f = Future<int>();
f = templateActor(24);
ASSERT(f.isReady() && !f.isError() && f.get() == 24 && f.getFutureReferenceCount() == 1 &&
f.getPromiseReferenceCount() == 0);
f = Future<int>();
result = 0;
voidWaitActor(Uncancellable(), 2, &result);
ASSERT(result == 2 && expectActorCount(0));
Promise<int> p;
f = addOneActor(p.getFuture());
ASSERT(!f.isReady() && expectActorCount(1));
p.send(100);
ASSERT(f.isReady() && f.get() == 101);
f = Future<int>();
PromiseStream<int> ps;
f = consumeOneActor(ps.getFuture());
ASSERT(!f.isReady() && expectActorCount(1));
ps.send(101);
ASSERT(f.get() == 101 && ps.isEmpty());
ps.send(102);
ASSERT(!ps.isEmpty());
f = consumeOneActor(ps.getFuture());
ASSERT(f.get() == 102 && ps.isEmpty());
f = sumActor(ps.getFuture());
ps.send(1);
ps.send(10);
ps.send(100);
ps.sendError(end_of_stream());
ASSERT(f.get() == 111);
return Void();
}
TEST_CASE("/flow/coro/yieldedFuture/progress") {
// Check that if check_yield always returns true, the yieldedFuture will do nothing immediately but will
// get one thing done per "tick" (per delay(0) returning).
auto yn = makeReference<YieldMockNetwork>();
yn->nextYield = 0;
Promise<Void> p;
Future<Void> u = p.getFuture();
Future<Void> i = success(u);
std::vector<Future<Void>> v;
for (int j = 0; j < 5; j++)
v.push_back(yieldedFuture(u));
auto numReady = [&v]() { return std::count_if(v.begin(), v.end(), [](Future<Void> v) { return v.isReady(); }); };
ASSERT(numReady() == 0);
p.send(Void());
ASSERT(u.isReady() && i.isReady() && numReady() == 0);
for (int j = 0; j < 5; j++) {
yn->tick();
ASSERT(numReady() == j + 1);
}
for (int j = 0; j < 5; j++) {
ASSERT(v[j].getPromiseReferenceCount() == 0 && v[j].getFutureReferenceCount() == 1);
}
return Void();
}
TEST_CASE("/flow/coro/yieldedFuture/random") {
// Check expectations about exactly how yieldedFuture responds to check_yield results
auto yn = makeReference<YieldMockNetwork>();
for (int r = 0; r < 100; r++) {
Promise<Void> p;
Future<Void> u = p.getFuture();
Future<Void> i = success(u);
std::vector<Future<Void>> v;
for (int j = 0; j < 25; j++)
v.push_back(yieldedFuture(u));
auto numReady = [&v]() {
return std::count_if(v.begin(), v.end(), [](Future<Void> v) { return v.isReady(); });
};
Future<Void> j = success(u);
ASSERT(numReady() == 0);
int expectYield = deterministicRandom()->randomInt(0, 4);
int expectReady = expectYield;
yn->nextYield = 1 + expectYield;
p.send(Void());
ASSERT(u.isReady() && i.isReady() && j.isReady() && numReady() == expectReady);
while (numReady() != v.size()) {
expectYield = deterministicRandom()->randomInt(0, 4);
yn->nextYield = 1 + expectYield;
expectReady += 1 + expectYield;
yn->tick();
// printf("Yielding %d times, expect %d/%d ready, got %d\n", expectYield, expectReady, v.size(), numReady()
// );
ASSERT(numReady() == std::min<int>(expectReady, v.size()));
}
for (int k = 0; k < v.size(); k++) {
ASSERT(v[k].getPromiseReferenceCount() == 0 && v[k].getFutureReferenceCount() == 1);
}
}
return Void();
}
TEST_CASE("/flow/coro/perf/yieldedFuture") {
double start;
int N = 1000000;
auto yn = makeReference<YieldMockNetwork>();
yn->nextYield = 2 * N + 100;
Promise<Void> p;
Future<Void> f = p.getFuture();
std::vector<Future<Void>> ys;
start = timer();
for (int i = 0; i < N; i++)
ys.push_back(yieldedFuture(f));
printf("yieldedFuture(f) create: %0.1f M/sec\n", N / 1e6 / (timer() - start));
p.send(Void());
printf("yieldedFuture(f) total: %0.1f M/sec\n", N / 1e6 / (timer() - start));
for (auto& y : ys)
ASSERT(y.isReady());
p = Promise<Void>();
f = p.getFuture();
start = timer();
for (int i = 0; i < N; i++) {
// We're only measuring how long it takes to cancel things, so no need to run any of them
(void)yieldedFuture(f);
}
printf("yieldedFuture(f) cancel: %0.1f M/sec\n", N / 1e6 / (timer() - start));
return Void();
}
TEST_CASE("/flow/coro/chooseTwoActor") {
ASSERT(expectActorCount(0));
Promise<Void> a, b;
Future<Void> c = chooseTwoActor(a.getFuture(), b.getFuture());
ASSERT(a.getFutureReferenceCount() == 2 && b.getFutureReferenceCount() == 2 && !c.isReady());
b.send(Void());
ASSERT(a.getFutureReferenceCount() == 0 && b.getFutureReferenceCount() == 0 && c.isReady() && !c.isError() &&
expectActorCount(1));
c = Future<Void>();
ASSERT(a.getFutureReferenceCount() == 0 && b.getFutureReferenceCount() == 0 && expectActorCount(0));
return Void();
}
TEST_CASE("#flow/coro/perf/actor patterns") {
double start;
int N = 1000000;
ASSERT(expectActorCount(0));
start = timer();
for (int i = 0; i < N; i++)
emptyVoidActor();
printf("emptyVoidActor(): %0.1f M/sec\n", N / 1e6 / (timer() - start));
ASSERT(expectActorCount(0));
start = timer();
for (int i = 0; i < N; i++) {
emptyActor();
}
printf("emptyActor(): %0.1f M/sec\n", N / 1e6 / (timer() - start));
ASSERT(expectActorCount(0));
Promise<Void> neverSet;
Future<Void> never = neverSet.getFuture();
Future<Void> already = Void();
start = timer();
for (int i = 0; i < N; i++)
oneWaitVoidActor(Uncancellable(), already);
printf("oneWaitVoidActor(already): %0.1f M/sec\n", N / 1e6 / (timer() - start));
ASSERT(expectActorCount(0));
/*start = timer();
for (int i = 0; i < N; i++)
oneWaitVoidActor(never);
printf("oneWaitVoidActor(never): %0.1f M/sec\n", N / 1e6 / (timer() - start));*/
{
start = timer();
for (int i = 0; i < N; i++) {
Future<Void> f = oneWaitActor(already);
ASSERT(f.isReady());
}
printf("oneWaitActor(already): %0.1f M/sec\n", N / 1e6 / (timer() - start));
}
{
start = timer();
for (int i = 0; i < N; i++) {
Future<Void> f = oneWaitActor(never);
ASSERT(!f.isReady());
}
printf("(cancelled) oneWaitActor(never): %0.1f M/sec\n", N / 1e6 / (timer() - start));
ASSERT(expectActorCount(0));
}
{
start = timer();
for (int i = 0; i < N; i++) {
Promise<Void> p;
Future<Void> f = oneWaitActor(p.getFuture());
p.send(Void());
ASSERT(f.isReady());
}
printf("oneWaitActor(after): %0.1f M/sec\n", N / 1e6 / (timer() - start));
}
{
std::vector<Promise<Void>> pipe(N);
std::vector<Future<Void>> out(N);
start = timer();
for (int i = 0; i < N; i++) {
out[i] = oneWaitActor(pipe[i].getFuture());
}
for (int i = 0; i < N; i++) {
pipe[i].send(Void());
ASSERT(out[i].isReady());
}
printf("oneWaitActor(fifo): %0.1f M/sec\n", N / 1e6 / (timer() - start));
}
{
std::vector<Promise<Void>> pipe(N);
std::vector<Future<Void>> out(N);
start = timer();
for (int i = 0; i < N; i++) {
out[i] = oneWaitActor(pipe[i].getFuture());
}
for (int i = N - 1; i >= 0; i--) {
pipe[i].send(Void());
ASSERT(out[i].isReady());
}
printf("oneWaitActor(lifo): %0.1f M/sec\n", N / 1e6 / (timer() - start));
}
{
start = timer();
for (int i = 0; i < N; i++) {
Future<Void> f = chooseTwoActor(already, already);
ASSERT(f.isReady());
}
printf("chooseTwoActor(already, already): %0.1f M/sec\n", N / 1e6 / (timer() - start));
}
{
start = timer();
for (int i = 0; i < N; i++) {
Future<Void> f = chooseTwoActor(already, never);
ASSERT(f.isReady());
}
printf("chooseTwoActor(already, never): %0.1f M/sec\n", N / 1e6 / (timer() - start));
}
{
start = timer();
for (int i = 0; i < N; i++) {
Future<Void> f = chooseTwoActor(never, already);
ASSERT(f.isReady());
}
printf("chooseTwoActor(never, already): %0.1f M/sec\n", N / 1e6 / (timer() - start));
}
{
start = timer();
for (int i = 0; i < N; i++) {
Future<Void> f = chooseTwoActor(never, never);
ASSERT(!f.isReady());
}
// ASSERT(expectActorCount(0));
printf("(cancelled) chooseTwoActor(never, never): %0.1f M/sec\n", N / 1e6 / (timer() - start));
}
{
start = timer();
for (int i = 0; i < N; i++) {
Promise<Void> p;
Future<Void> f = chooseTwoActor(p.getFuture(), never);
p.send(Void());
ASSERT(f.isReady());
}
printf("chooseTwoActor(after, never): %0.1f M/sec\n", N / 1e6 / (timer() - start));
}
{
std::vector<Promise<Void>> pipe(N);
std::vector<Future<Void>> out(N);
start = timer();
for (int i = 0; i < N; i++) {
out[i] = chooseTwoActor(pipe[i].getFuture(), never);
}
for (int i = 0; i < N; i++) {
pipe[i].send(Void());
ASSERT(out[i].isReady());
}
printf("chooseTwoActor(fifo, never): %0.1f M/sec\n", N / 1e6 / (timer() - start));
}
{
std::vector<Promise<Void>> pipe(N);
std::vector<Future<Void>> out(N);
start = timer();
for (int i = 0; i < N; i++) {
out[i] = chooseTwoActor(pipe[i].getFuture(), pipe[i].getFuture());
}
for (int i = 0; i < N; i++) {
pipe[i].send(Void());
ASSERT(out[i].isReady());
}
printf("chooseTwoActor(fifo, fifo): %0.1f M/sec\n", N / 1e6 / (timer() - start));
}
{
std::vector<Promise<Void>> pipe(N);
std::vector<Future<Void>> out(N);
start = timer();
for (int i = 0; i < N; i++) {
out[i] = chooseTwoActor(chooseTwoActor(pipe[i].getFuture(), never), never);
}
for (int i = 0; i < N; i++) {
pipe[i].send(Void());
ASSERT(out[i].isReady());
}
printf("chooseTwoActor^2((fifo, never), never): %0.1f M/sec\n", N / 1e6 / (timer() - start));
}
{
start = timer();
for (int i = 0; i < N; i++) {
Promise<Void> p;
Future<Void> f = oneWaitActor(chooseTwoActor(p.getFuture(), never));
p.send(Void());
ASSERT(f.isReady());
}
printf("oneWaitActor(chooseTwoActor(after, never)): %0.1f M/sec\n", N / 1e6 / (timer() - start));
}
{
std::vector<Promise<Void>> pipe(N);
std::vector<Future<Void>> out(N);
start = timer();
for (int i = 0; i < N; i++) {
out[i] = oneWaitActor(chooseTwoActor(pipe[i].getFuture(), never));
}
for (int i = 0; i < N; i++) {
pipe[i].send(Void());
ASSERT(out[i].isReady());
}
printf("oneWaitActor(chooseTwoActor(fifo, never)): %0.1f M/sec\n", N / 1e6 / (timer() - start));
}
{
start = timer();
for (int i = 0; i < N; i++) {
Promise<Void> p;
Future<Void> f = chooseTwoActor(p.getFuture(), never);
Future<Void> a = oneWaitActor(f);
Future<Void> b = oneWaitActor(f);
p.send(Void());
ASSERT(f.isReady());
}
printf("2xoneWaitActor(chooseTwoActor(after, never)): %0.2f M/sec\n", N / 1e6 / (timer() - start));
}
{
std::vector<Promise<Void>> pipe(N);
std::vector<Future<Void>> out1(N);
std::vector<Future<Void>> out2(N);
start = timer();
for (int i = 0; i < N; i++) {
Future<Void> f = chooseTwoActor(pipe[i].getFuture(), never);
out1[i] = oneWaitActor(f);
out2[i] = oneWaitActor(f);
}
for (int i = 0; i < N; i++) {
pipe[i].send(Void());
ASSERT(out2[i].isReady());
}
printf("2xoneWaitActor(chooseTwoActor(fifo, never)): %0.2f M/sec\n", N / 1e6 / (timer() - start));
}
{
std::vector<Promise<Void>> pipe(N);
std::vector<Future<Void>> out1(N);
std::vector<Future<Void>> out2(N);
start = timer();
for (int i = 0; i < N; i++) {
Future<Void> f = chooseTwoActor(oneWaitActor(pipe[i].getFuture()), never);
out1[i] = oneWaitActor(f);
out2[i] = oneWaitActor(f);
}
for (int i = 0; i < N; i++) {
pipe[i].send(Void());
ASSERT(out2[i].isReady());
}
printf("2xoneWaitActor(chooseTwoActor(oneWaitActor(fifo), never)): %0.2f M/sec\n", N / 1e6 / (timer() - start));
}
{
std::vector<Promise<Void>> pipe(N);
std::vector<Future<Void>> out1(N);
std::vector<Future<Void>> out2(N);
start = timer();
for (int i = 0; i < N; i++) {
g_cheese = pipe[i].getFuture();
Future<Void> f = chooseTwoActor(cheeseWaitActor(), never);
g_cheese = f;
out1[i] = cheeseWaitActor();
out2[i] = cheeseWaitActor();
}
for (int i = 0; i < N; i++) {
pipe[i].send(Void());
ASSERT(out2[i].isReady());
}
printf("2xcheeseActor(chooseTwoActor(cheeseActor(fifo), never)): %0.2f M/sec\n", N / 1e6 / (timer() - start));
// printf("sizeof(CheeseWaitActorActor) == %zu\n", cheeseWaitActorSize());
}
{
PromiseStream<int> data;
start = timer();
Future<int> sum = sumActor(data.getFuture());
for (int i = 0; i < N; i++)
data.send(1);
data.sendError(end_of_stream());
ASSERT(sum.get() == N);
printf("sumActor: %0.2f M/sec\n", N / 1e6 / (timer() - start));
}
{
start = timer();
std::vector<Promise<Void>> ps(3);
std::vector<Future<Void>> fs(3);
for (int i = 0; i < N; i++) {
ps.clear();
ps.resize(3);
for (int j = 0; j < ps.size(); j++)
fs[j] = ps[j].getFuture();
Future<Void> q = quorum(fs, 2);
for (auto& p : ps)
p.send(Void());
}
printf("quorum(2/3): %0.2f M/sec\n", N / 1e6 / (timer() - start));
}
return Void();
}
namespace {
template <class YAM>
struct YAMRandom {
YAM yam;
std::vector<Future<Void>> onchanges;
int kmax;
YAMRandom() : kmax(3) {}
void randomOp() {
if (deterministicRandom()->random01() < 0.01)
while (!check_yield())
;
int k = deterministicRandom()->randomInt(0, kmax);
int op = deterministicRandom()->randomInt(0, 7);
// printf("%d",op);
if (op == 0) {
onchanges.push_back(yam.onChange(k));
} else if (op == 1) {
onchanges.push_back(trigger([this]() { this->randomOp(); }, yam.onChange(k)));
} else if (op == 2) {
if (onchanges.size()) {
int i = deterministicRandom()->randomInt(0, onchanges.size());
onchanges[i] = onchanges.back();
onchanges.pop_back();
}
} else if (op == 3) {
onchanges.clear();
} else if (op == 4) {
int v = deterministicRandom()->randomInt(0, 3);
yam.set(k, v);
} else if (op == 5) {
yam.trigger(k);
} else if (op == 6) {
int a = deterministicRandom()->randomInt(0, kmax);
int b = deterministicRandom()->randomInt(0, kmax);
yam.triggerRange(std::min(a, b), std::max(a, b) + 1);
}
}
};
} // namespace
TEST_CASE("/flow/coro/long_loop") {
uint64_t res = 0;
uint64_t n = 100'000;
for (decltype(n) i = 0; i < n; ++i) {
if (i < 99'999) {
// prevent compiler optimizations by doing something "useful" in the loop
res += i + 1;
continue;
}
co_await delay(0.1);
}
ASSERT(res == n * (n - 1) / 2);
}
TEST_CASE("/flow/coro/YieldedAsyncMap/randomized") {
YAMRandom<YieldedAsyncMap<int, int>> yamr;
int it;
for (it = 0; it < 100000; it++) {
yamr.randomOp();
co_await yield();
if (it % 100 == 0) {
fmt::print("/flow/coro/YieldedAsyncMap/randomized iteration {}\n", it);
}
}
}
TEST_CASE("/flow/coro/AsyncMap/randomized") {
YAMRandom<AsyncMap<int, int>> yamr;
for (int it = 0; it < 100000; it++) {
yamr.randomOp();
co_await yield();
}
}
TEST_CASE("/flow/coro/YieldedAsyncMap/basic") {
YieldedAsyncMap<int, int> yam;
Future<Void> y0 = yam.onChange(1);
yam.setUnconditional(1, 0);
Future<Void> y1 = yam.onChange(1);
Future<Void> y1a = yam.onChange(1);
Future<Void> y1b = yam.onChange(1);
yam.set(1, 1);
// while (!check_yield()) {}
// yam.triggerRange(0, 4);
Future<Void> y2 = yam.onChange(1);
co_await reportErrors(y0, "Y0");
co_await reportErrors(y1, "Y1");
co_await reportErrors(y1a, "Y1a");
co_await reportErrors(y1b, "Y1b");
co_await reportErrors(timeout(y2, 5, Void()), "Y2");
}
TEST_CASE("/flow/coro/YieldedAsyncMap/cancel") {
YieldedAsyncMap<int, int> yam;
// ASSERT(yam.count(1) == 0);
// state Future<Void> y0 = yam.onChange(1);
// ASSERT(yam.count(1) == 1);
// yam.setUnconditional(1, 0);
ASSERT(yam.count(1) == 0);
Future<Void> y1 = yam.onChange(1);
Future<Void> y1a = yam.onChange(1);
Future<Void> y1b = yam.onChange(1);
ASSERT(yam.count(1) == 1);
y1.cancel();
ASSERT(!y1a.isReady());
y1a.cancel();
ASSERT(!y1b.isReady());
ASSERT(yam.count(1) == 1);
y1b.cancel();
ASSERT(y1b.getError().code() == error_code_actor_cancelled);
ASSERT(yam.count(1) == 0);
return Void();
}
TEST_CASE("/flow/coro/YieldedAsyncMap/cancel2") {
YieldedAsyncMap<int, int> yam;
Future<Void> y1 = yam.onChange(1);
Future<Void> y2 = yam.onChange(2);
auto* pyam = &yam;
uncancellable(trigger(
[pyam]() {
printf("Triggered\n");
pyam->triggerAll();
},
delay(1)));
co_await y1;
printf("Got y1\n");
y2.cancel();
}
TEST_CASE("/flow/coro/AsyncVar/basic") {
AsyncVar<int> av;
Future<Void> ch = av.onChange();
ASSERT(!ch.isReady());
av.set(5);
ASSERT(ch.isReady());
ASSERT(av.get() == 5);
ch = av.onChange();
ASSERT(!ch.isReady());
av.set(6);
ASSERT(ch.isReady());
ASSERT(av.get() == 6);
return Void();
}
namespace {
Future<Void> waitAfterCancel(int* output) {
*output = 0;
try {
co_await Future<Void>(Never());
} catch (...) {
}
co_await ((*output = 1, Future<Void>(Void())));
ASSERT(false);
}
} // namespace
TEST_CASE("/fdbrpc/flow/wait_expression_after_cancel_coro") {
int a = -1;
Future<Void> f = waitAfterCancel(&a);
ASSERT(a == 0);
f.cancel();
ASSERT(a == 1);
return Void();
}
// Tests for https://github.com/apple/foundationdb/issues/1226
namespace {
template <class>
struct ShouldNotGoIntoClassContextStack;
class Foo1 {
public:
explicit Foo1(int x) : x(x) {}
Future<int> foo();
private:
int x;
};
Future<int> Foo1::foo() {
co_await Future<Void>();
co_return x;
}
class [[nodiscard]] Foo2 {
public:
explicit Foo2(int x) : x(x) {}
Future<int> foo();
private:
int x;
};
Future<int> Foo2::foo() {
co_await Future<Void>();
co_return x;
}
class alignas(4) Foo3 {
public:
explicit Foo3(int x) : x(x) {}
Future<int> foo();
private:
int x;
};
Future<int> Foo3::foo() {
co_await Future<Void>();
co_return x;
}
struct Super {};
class Foo4 : Super {
public:
explicit Foo4(int x) : x(x) {}
Future<int> foo();
private:
int x;
};
Future<int> Foo4::foo() {
co_await Future<Void>();
co_return x;
}
struct Outer {
class Foo5 : Super {
public:
explicit Foo5(int x) : x(x) {}
Future<int> foo();
private:
int x;
};
};
Future<int> Outer::Foo5::foo() {
co_await Future<Void>();
co_return x;
}
struct Tracker {
int copied;
bool moved;
Tracker(int copied = 0) : copied(copied), moved(false) {}
Tracker(Tracker&& other) : Tracker(other.copied) {
ASSERT(!other.moved);
other.moved = true;
}
Tracker& operator=(Tracker&& other) {
ASSERT(!other.moved);
other.moved = true;
this->moved = false;
this->copied = other.copied;
return *this;
}
Tracker(const Tracker& other) : Tracker(other.copied + 1) { ASSERT(!other.moved); }
Tracker& operator=(const Tracker& other) {
ASSERT(!other.moved);
this->moved = false;
this->copied = other.copied + 1;
return *this;
}
~Tracker() = default;
static Future<Void> listen(FutureStream<Tracker> stream) {
Tracker movedTracker = co_await stream;
ASSERT(!movedTracker.moved);
ASSERT(movedTracker.copied == 0);
}
};
} // namespace
TEST_CASE("/flow/coro/PromiseStream/move") {
PromiseStream<Tracker> stream;
Future<Void> listener;
{
// This tests the case when a callback is added before
// a movable value is sent
listener = Tracker::listen(stream.getFuture());
stream.send(Tracker{});
co_await listener;
}
{
// This tests the case when a callback is added before
// a unmovable value is sent
listener = Tracker::listen(stream.getFuture());
Tracker namedTracker;
stream.send(std::move(namedTracker));
co_await listener;
}
{
// This tests the case when no callback is added until
// after a movable value is sent
stream.send(Tracker{});
stream.send(Tracker{});
{
const Tracker& movedTracker = co_await stream.getFuture();
ASSERT(!movedTracker.moved);
ASSERT(movedTracker.copied == 0);
}
{
const Tracker& movedTracker = co_await stream.getFuture();
ASSERT(!movedTracker.moved);
ASSERT(movedTracker.copied == 0);
}
}
{
// This tests the case when no callback is added until
// after an unmovable value is sent
Tracker namedTracker1;
Tracker namedTracker2;
stream.send(namedTracker1);
stream.send(namedTracker2);
{
const Tracker& copiedTracker = co_await stream.getFuture();
ASSERT(!copiedTracker.moved);
// must copy onto queue
ASSERT(copiedTracker.copied == 1);
}
{
const Tracker& copiedTracker = co_await stream.getFuture();
ASSERT(!copiedTracker.moved);
// must copy onto queue
ASSERT(copiedTracker.copied == 1);
}
}
}
TEST_CASE("/flow/coro/PromiseStream/move2") {
PromiseStream<Tracker> stream;
stream.send(Tracker{});
const Tracker& tracker = co_await stream.getFuture();
Tracker movedTracker = std::move(const_cast<Tracker&>(tracker));
ASSERT(tracker.moved);
ASSERT(!movedTracker.moved);
ASSERT(movedTracker.copied == 0);
}
namespace {
constexpr double mutexTestDelay = 0.00001;
Future<Void> mutexTest(int id, FlowMutex* mutex, int n, bool allowError, bool* verbose) {
while (n-- > 0) {
double d = deterministicRandom()->random01() * mutexTestDelay;
if (*verbose) {
printf("%d:%d wait %f while unlocked\n", id, n, d);
}
co_await delay(d);
if (*verbose) {
printf("%d:%d locking\n", id, n);
}
FlowMutex::Lock lock = co_await mutex->take();
if (*verbose) {
printf("%d:%d locked\n", id, n);
}
d = deterministicRandom()->random01() * mutexTestDelay;
if (*verbose) {
printf("%d:%d wait %f while locked\n", id, n, d);
}
co_await delay(d);
// On the last iteration, send an error or drop the lock if allowError is true
if (n == 0 && allowError) {
if (deterministicRandom()->coinflip()) {
// Send explicit error
if (*verbose) {
printf("%d:%d sending error\n", id, n);
}
lock.error(end_of_stream());
} else {
// Do nothing
if (*verbose) {
printf("%d:%d dropping promise, returning without unlock\n", id, n);
}
}
} else {
if (*verbose) {
printf("%d:%d unlocking\n", id, n);
}
lock.release();
}
}
if (*verbose) {
printf("%d Returning\n", id);
}
}
} // namespace
TEST_CASE("/flow/coro/FlowMutex") {
int count = 100000;
// Default verboseness
bool verboseSetting = false;
// Useful for debugging, enable verbose mode for this iteration number
int verboseTestIteration = -1;
try {
bool verbose = verboseSetting || count == verboseTestIteration;
while (--count > 0) {
if (count % 1000 == 0) {
printf("%d tests left\n", count);
}
FlowMutex mutex;
std::vector<Future<Void>> tests;
bool allowErrors = deterministicRandom()->coinflip();
if (verbose) {
printf("\nTesting allowErrors=%d\n", allowErrors);
}
Optional<Error> error;
try {
for (int i = 0; i < 10; ++i) {
tests.push_back(mutexTest(i, &mutex, 10, allowErrors, &verbose));
}
co_await waitForAll(tests);
if (allowErrors) {
if (verbose) {
printf("Final wait in case error was injected by the last actor to finish\n");
}
co_await mutex.take();
}
} catch (Error& e) {
if (verbose) {
printf("Caught error %s\n", e.what());
}
error = e;
}
if (error.present()) {
// Some actors can still be running, waiting while locked or unlocked,
// but all should become ready, some with errors.
if (verbose) {
printf("Waiting for completions. Future end states:\n");
}
for (int i = 0; i < tests.size(); ++i) {
ErrorOr<Void> f = co_await errorOr(tests[i]);
if (verbose) {
printf(" %d: %s\n", i, f.isError() ? f.getError().what() : "done");
}
}
}
// If an error was caused, one should have been detected.
// Otherwise, no errors should be detected.
ASSERT(error.present() == allowErrors);
}
} catch (Error& e) {
printf("Error at count=%d\n", count + 1);
ASSERT(false);
}
}
namespace {
struct LifetimeLogger {
LifetimeLogger(std::ostream& ss, int id) : ss(ss), id(id) {
ss << "LifetimeLogger(" << id << "). ";
std::cout << "LifetimeLogger(" << id << ").\n";
}
~LifetimeLogger() {
ss << "~LifetimeLogger(" << id << "). ";
std::cout << "~LifetimeLogger(" << id << ").\n";
}
std::ostream& ss;
int id;
};
template <typename T>
Future<Void> simple_await_test(std::stringstream& ss, Future<T> f) {
ss << "start. ";
LifetimeLogger ll(ss, 0);
co_await (f);
ss << "wait returned. ";
LifetimeLogger ll2(ss, 1);
co_return;
ss << "after co_return. ";
}
Future<Void> actor_cancel_test(std::stringstream& ss) {
ss << "start. ";
LifetimeLogger ll(ss, 0);
try {
co_await delay(100);
} catch (Error& e) {
ss << "error: " << e.what() << ". ";
}
std::string foo = "foo";
co_await delay(1.0);
ss << "wait returned. ";
// foo is alive here!
co_return;
ss << "after co_return. ";
}
Future<Void> actor_throw_test(std::stringstream& ss) {
ss << "start. ";
LifetimeLogger ll(ss, 0);
co_await delay(0);
throw io_error();
ss << "after throw. ";
co_return;
ss << "after co_return. ";
}
Future<Void> simpleWaitTestCoro() {
std::cout << "simple_wait_test coro\n";
std::cout << "=====================\n";
std::stringstream ss;
try {
fmt::print("before wait\n");
co_await simple_await_test(ss, Future<int>(io_error()));
} catch (Error& e) {
fmt::print("error\n");
ss << "error: " << e.what() << ". ";
}
std::cout << ss.str() << std::endl << std::endl;
};
template <class T, class U>
Future<Void> tagAndForwardCoro(Uncancellable, Promise<T>* pOutputPromise, U value, Future<Void> signal) {
Promise<T> out(std::move(*pOutputPromise));
co_await signal;
out.send(std::move(value));
}
// this is just there to make sure the stack is properly cleaned up during this test. However, in real code
// this indirection wouldn't be necessary
template <class T, class U>
void tagAndForwardWrapper(Promise<T>* pOutputPromise, U value, Future<Void> signal) {
tagAndForwardCoro(Uncancellable(), pOutputPromise, std::move(value), std::move(signal));
}
Future<Void> testUncancellable() {
Promise<int> p;
Future<int> fut = p.getFuture();
tagAndForwardWrapper(&p, 2, delay(0.2));
ASSERT(co_await fut == 2);
}
Future<int> delayAndReturn(Uncancellable) {
co_await delay(1.0);
co_return 5;
}
Future<Void> testUncancellable2() {
try {
auto f = delayAndReturn(Uncancellable());
co_await delay(0.1);
f.cancel();
ASSERT(co_await f == 5);
} catch (Error& e) {
ASSERT(e.code() != error_code_actor_cancelled);
}
}
Future<int> sendToRandomPromise(Promise<Void> voidPromise,
Promise<int> intPromise,
Promise<double> doublePromise,
PromiseStream<Void> voidStream,
PromiseStream<int> intStream) {
co_await delay(0.1);
int branch = deterministicRandom()->randomInt(0, 5);
switch (branch) {
case 0:
voidPromise.send(Void());
break;
case 1:
intPromise.send(7);
break;
case 2:
doublePromise.send(8.0);
break;
case 3:
voidStream.send(Void());
break;
case 4:
intStream.send(13);
break;
default:
ASSERT(false);
}
co_return branch;
}
Future<Void> testChooseWhen() {
co_await Choose()
.When(delay(1), [](Void const&) { ASSERT(false); })
.When(Future<Void>(Void()), [](Void const&) { /*success*/ })
.When(
[]() {
ASSERT(false);
return Future<Void>(Void());
},
[](Void const&) { ASSERT(false); })
.run();
try {
co_await Choose()
.When(Future<Void>(Never()), [](Void const&) { ASSERT(false); })
.When([]() -> Future<Void> { throw io_error(); }, [](Void const&) { ASSERT(false); })
.run();
} catch (Error const& e) {
ASSERT(e.code() == error_code_io_error);
}
Promise<Void> voidPromise;
Promise<int> intPromise;
Promise<double> doublePromise;
PromiseStream<Void> voidStream;
PromiseStream<int> intStream;
int chosenBranch = -1;
Future<int> chooseAfter = sendToRandomPromise(voidPromise, intPromise, doublePromise, voidStream, intStream);
co_await Choose()
.When(voidPromise.getFuture(),
[&chosenBranch](Void const&) {
fmt::print("Chose Branch {}\n", 0);
chosenBranch = 0;
})
.When(intPromise.getFuture(),
[&chosenBranch](int const& i) {
fmt::print("Chose Branch {}\n", 1);
chosenBranch = 1;
ASSERT(i == 7);
})
.When(doublePromise.getFuture(),
[&chosenBranch](double const& d) {
fmt::print("Chose Branch {}\n", 2);
chosenBranch = 2;
ASSERT(d == 8.0);
})
.When(voidStream.getFuture(),
[&chosenBranch](Void const&) {
fmt::print("Chose Branch {}\n", 3);
chosenBranch = 3;
})
.When(intStream.getFuture(),
[&chosenBranch](int const& i) {
fmt::print("Chose Branch {}\n", 4);
chosenBranch = 4;
ASSERT(i == 13);
})
.run();
ASSERT(chosenBranch == co_await chooseAfter);
}
Future<Void> delaySequence(PromiseStream<double> p, std::vector<double>* nums) {
for (auto n : *nums) {
co_await delay(n);
p.send(n);
}
}
Future<Void> futureStreamTest() {
std::vector<double> rnds;
rnds.reserve(100);
for (int i = 0; i < 100; ++i) {
rnds.emplace_back(deterministicRandom()->random01() * 0.1);
}
PromiseStream<double> promise;
auto fut = promise.getFuture();
Future<Void> f = delaySequence(std::move(promise), &rnds);
int i = 0;
while (!f.isReady() || fut.isReady()) {
try {
ASSERT(co_await fut == rnds[i++]);
} catch (Error& e) {
if (e.code() == error_code_broken_promise) {
break;
}
throw;
}
}
ASSERT(i == 100);
}
template <class T>
Future<Void> verifyAddress(T* ptr, intptr_t address) {
co_await delay(0.1);
ASSERT(reinterpret_cast<intptr_t>(ptr) == address);
}
Future<Void> stackMemoryTest() {
int a = deterministicRandom()->randomInt(0, 1000);
auto aPtr = reinterpret_cast<intptr_t>(&a);
co_await verifyAddress(&a, aPtr);
ASSERT(aPtr == reinterpret_cast<intptr_t>(&a));
}
AsyncGenerator<int> simpleGeneratorTest() {
for (int i = 0; true; ++i) {
co_await delay(0.01);
co_yield i;
}
}
Future<Void> testSimpleGenerator() {
auto gen = simpleGeneratorTest();
for (int i = 0; i < 100; ++i) {
ASSERT(gen);
ASSERT(co_await gen() == i);
}
}
AsyncGenerator<StringRef> readBlocks(Reference<IAsyncFile> file, size_t blockSize) {
auto size = size_t(co_await file->size());
decltype(size) offset = 0;
Arena arena;
auto buffer = new (arena) uint8_t[blockSize];
while (size - offset > 0) {
auto read = co_await file->read(buffer, int(std::min(size - offset, blockSize)), offset);
offset += read;
co_yield StringRef(buffer, read);
}
}
AsyncGenerator<StringRef> readLines(Reference<IAsyncFile> file) {
constexpr size_t blockSize = 4096;
auto gen = readBlocks(file, blockSize);
Arena arena;
StringRef line;
while (gen) {
StringRef block;
try {
block = co_await gen();
} catch (Error& e) {
if (e.code() == error_code_end_of_stream) {
break;
}
throw;
}
bool lastIsNewline = char(block[block.size() - 1]) == '\n';
ASSERT(!block.empty());
if (!line.empty()) {
// we have to carry over data from a previous block
auto firstLine = block.eatAny("\n"_sr, nullptr);
line = concatenateStrings(arena, line, firstLine);
if (!block.empty() || lastIsNewline) {
// we read at least one block
co_yield line;
line = StringRef();
arena = Arena();
}
}
ASSERT(line.empty() || block.empty());
while (!block.empty()) {
line = block.eatAny("\n"_sr, nullptr);
if (!block.empty()) [[likely]] {
co_yield line;
} else {
if (lastIsNewline) {
co_yield line;
line = StringRef();
arena = Arena();
} else {
// this line might not be complete, so we need to potentially concatenate it with
// the beginning of the next block
line = StringRef(arena, line);
}
}
}
}
if (!line.empty()) {
co_yield line;
}
}
AsyncGenerator<StringRef> lineGenerator(size_t minLen,
size_t maxLen,
size_t blockSize,
Standalone<VectorRef<StringRef>>* lines) {
size_t remainingLine = 0;
bool firstBlock = true;
bool startedLine = false;
loop {
Arena arena;
auto block = new (arena) uint8_t[blockSize];
size_t offset = 0;
while (offset < blockSize) {
size_t lineLength =
remainingLine == 0 ? deterministicRandom()->randomSkewedUInt32(minLen, maxLen) : remainingLine;
auto toWrite = std::min(blockSize - offset, lineLength);
remainingLine = lineLength - toWrite;
for (size_t i = 0; i < toWrite; ++i) {
block[offset + i] = uint8_t(deterministicRandom()->randomAlphaNumeric());
}
StringRef currLine;
if (remainingLine == 0) {
block[offset + toWrite - 1] = uint8_t('\n');
currLine = StringRef(block + offset, int(toWrite - 1));
} else {
currLine = StringRef(block + offset, int(toWrite));
}
if (startedLine) {
lines->back() = concatenateStrings(lines->arena(), lines->back(), currLine);
} else {
lines->push_back_deep(lines->arena(), currLine);
}
startedLine = remainingLine != 0;
offset += toWrite;
}
if (firstBlock) {
firstBlock = false;
}
co_yield StringRef(block, blockSize);
}
}
Future<Standalone<VectorRef<StringRef>>> writeTestFile(Reference<IAsyncFile> file) {
size_t length = (1 << 20); // 1MB
constexpr size_t minLineLength = 10;
constexpr size_t maxLineLength = 1024;
constexpr size_t blockSize = 4096;
Standalone<VectorRef<StringRef>> result;
auto gen = lineGenerator(minLineLength, maxLineLength, blockSize, &result);
size_t offset = 0;
while (offset < length) {
auto str = co_await gen();
for (int i = 0; i < str.size(); ++i) {
if (str[i] == '\0') {
fmt::print("Attempted to write 0-byte at block-offset {}\n", i);
ASSERT(false);
}
}
co_await file->write(str.begin(), str.size(), size_t(offset));
offset += str.size();
}
co_await file->flush();
co_return result;
}
std::string rndFileName() {
std::string rndString;
rndString.reserve(16);
for (int i = 0; i < 16; ++i) {
rndString.push_back(deterministicRandom()->randomAlphaNumeric());
}
return fmt::format("cppcoro_test_readlines_{}_{}.txt", int(now()), rndString);
}
Future<Void> testReadLines() {
auto filename = rndFileName();
auto file = co_await IAsyncFileSystem::filesystem()->open(filename,
IAsyncFile::OPEN_ATOMIC_WRITE_AND_CREATE |
IAsyncFile::OPEN_CREATE | IAsyncFile::OPEN_READWRITE,
0640);
auto expectedLines = co_await writeTestFile(file);
auto lines = readLines(file);
for (int i = 0; i < expectedLines.size(); ++i) {
ASSERT(lines);
auto line = co_await lines();
if (line != expectedLines[i]) {
fmt::print("ERROR on line {}:\n", i);
fmt::print("\t{}\n", line);
fmt::print("\t!=\n");
fmt::print("\t{}\n", expectedLines[i]);
ASSERT(false);
}
}
try {
auto line = co_await lines();
fmt::print("produced line after expected last line {}\n", expectedLines.size());
fmt::print("\t{}\n", line.toString());
// we should be done here
ASSERT(false);
} catch (Error& e) {
ASSERT(e.code() == error_code_end_of_stream);
}
// we only want to delete the file if the test was successful, so we don't wrap the above in a try-catch
co_await IAsyncFileSystem::filesystem()->deleteFile(filename, false);
}
AsyncGenerator<int> emptyGenerator() {
co_return;
}
Future<Void> testEmptyGenerator() {
auto gen = emptyGenerator();
while (gen) {
try {
fmt::print("Value: {}\n", co_await gen());
ASSERT(false);
} catch (Error& e) {
ASSERT(e.code() == error_code_end_of_stream);
}
}
}
template <class T>
Generator<T> walkElements(std::vector<T> elements) {
for (auto const& element : elements) {
co_yield element;
}
}
void testElementWalker() {
int numElements = deterministicRandom()->randomInt(100, 1000);
std::vector<int> elements;
elements.reserve(numElements);
for (int i = 0; i < numElements; ++i) {
elements.push_back(deterministicRandom()->randomInt(0, std::numeric_limits<int>::max()));
}
auto verificationCopy = elements;
auto gen = walkElements(std::move(elements));
for (auto e : verificationCopy) {
ASSERT(e == *gen);
++gen;
}
try {
ASSERT(!gen);
} catch (Error& e) {
ASSERT(e.code() == error_code_end_of_stream);
}
}
Future<Void> simpleCoro() {
co_await delay(0.1);
}
Future<Void> testSimpleCoro() {
Future<Void> c = simpleCoro();
fmt::print("Coro created\n");
co_await delay(1.0);
fmt::print("After sleep\n");
co_await c;
fmt::print("After await\n");
}
Generator<unsigned> fibonacci() {
unsigned curr = 1, next = 1;
loop {
co_yield curr;
curr = std::exchange(next, next + curr);
}
}
std::vector<unsigned> fibDivisible(unsigned n, unsigned by) {
std::vector<unsigned> res;
res.reserve(n);
for (auto i = fibonacci(); res.size() < n; ++i) {
if (*i % by == 0) {
res.push_back(*i);
}
}
return res;
}
std::vector<unsigned> fibDivisibleBad(unsigned n, unsigned by) {
unsigned curr = 1, next = 1;
std::vector<unsigned> res;
res.reserve(n);
while (res.size() < n) {
if (curr % by == 0) {
res.push_back(curr);
}
curr = std::exchange(next, curr + next);
}
return res;
}
void testFibDivisible() {
{
auto fibs = fibDivisibleBad(4, 3);
std::vector<unsigned> expected({ 3, 21, 144, 987 });
ASSERT(fibs.size() == expected.size());
for (int i = 0; i < expected.size(); ++i) {
ASSERT(fibs[i] == expected[i]);
}
}
{
auto fibs = fibDivisible(4, 3);
std::vector<unsigned> expected({ 3, 21, 144, 987 });
ASSERT(fibs.size() == expected.size());
for (int i = 0; i < expected.size(); ++i) {
ASSERT(fibs[i] == expected[i]);
}
}
}
} // namespace
// TODO: the test is excluded in RandomUnitTests due to failures that happen when run the test concurrently with other
// unit tests.
TEST_CASE("/flow/coro/generators") {
testFibDivisible();
co_await testEmptyGenerator();
co_await testSimpleGenerator();
co_await testReadLines();
testElementWalker();
}
TEST_CASE("/flow/coro/actor") {
co_await testSimpleCoro();
std::cout << "simple_wait_test\n";
std::cout << "================\n";
{
std::stringstream ss1;
try {
co_await simple_await_test(ss1, delay(1));
} catch (Error& e) {
ss1 << "error: " << e.what() << ". ";
}
std::cout << ss1.str() << std::endl;
ASSERT(ss1.str() == "start. LifetimeLogger(0). wait returned. LifetimeLogger(1). ~LifetimeLogger(1). "
"~LifetimeLogger(0). ");
}
co_await simpleWaitTestCoro();
std::cout << std::endl;
std::cout << "simple_wait_test\n";
std::cout << "================\n";
{
std::stringstream ss2;
try {
fmt::print("before wait\n");
co_await simple_await_test(ss2, Future<int>(io_error()));
} catch (Error& e) {
fmt::print("error\n");
ss2 << "error: " << e.what() << ". ";
}
std::cout << ss2.str() << std::endl;
ASSERT(ss2.str() == "start. LifetimeLogger(0). ~LifetimeLogger(0). error: Disk i/o operation failed. ");
}
std::cout << std::endl;
std::cout << "actor_cancel_test\n";
std::cout << "=================\n";
{
std::stringstream ss3;
{
Future<Void> f = actor_cancel_test(ss3);
co_await delay(1);
}
std::cout << ss3.str() << std::endl;
ASSERT(ss3.str() == "start. LifetimeLogger(0). error: Asynchronous operation cancelled. "
"~LifetimeLogger(0). ");
}
std::cout << std::endl;
std::cout << "actor_throw_test\n";
std::cout << "================\n";
{
std::stringstream ss4;
try {
co_await actor_throw_test(ss4);
} catch (Error& e) {
ss4 << "error: " << e.what() << ". ";
}
std::cout << ss4.str() << std::endl;
ASSERT(ss4.str() == "start. LifetimeLogger(0). ~LifetimeLogger(0). error: Disk i/o operation failed. ");
}
std::cout << std::endl;
co_await delay(0.1);
co_await testChooseWhen();
co_await testUncancellable();
co_await testUncancellable2();
co_await futureStreamTest();
co_await stackMemoryTest();
}
TEST_CASE("/flow/coro/chooseCancelWaiting") {
Promise<Void> voidPromise;
Promise<int> intPromise;
Future<Void> chooseFuture = Choose()
.When(voidPromise.getFuture(), [](const Void&) { ASSERT_ABORT(false); })
.When(intPromise.getFuture(), [](const int&) { ASSERT_ABORT(false); })
.run();
chooseFuture.cancel();
ASSERT(chooseFuture.getError().code() == error_code_actor_cancelled);
voidPromise.send(Void());
intPromise.sendError(end_of_stream());
ASSERT(chooseFuture.getError().code() == error_code_actor_cancelled);
return Void();
}
TEST_CASE("/flow/coro/chooseCancelReady") {
Promise<int> intPromise;
int res = 0;
Future<Void> chooseFuture = Choose().When(intPromise.getFuture(), [&](const int& val) { res = val; }).run();
intPromise.send(5);
ASSERT(chooseFuture.isReady());
ASSERT(res == 5);
chooseFuture.cancel();
ASSERT(chooseFuture.isReady());
return Void();
}
TEST_CASE("/flow/coro/chooseRepeatedCancel") {
Promise<Void> voidPromise;
Promise<int> intPromise;
Future<Void> chooseFuture = Choose()
.When(voidPromise.getFuture(), [](const Void&) { ASSERT_ABORT(false); })
.When(intPromise.getFuture(), [](const int&) { ASSERT_ABORT(false); })
.run();
chooseFuture.cancel();
ASSERT(chooseFuture.getError().code() == error_code_actor_cancelled);
chooseFuture.cancel();
ASSERT(chooseFuture.getError().code() == error_code_actor_cancelled);
voidPromise.sendError(end_of_stream());
intPromise.send(3);
ASSERT(chooseFuture.getError().code() == error_code_actor_cancelled);
return Void();
}