Files
PureDarwin/tools/mig/server.c
2021-01-22 18:21:14 -05:00

2773 lines
93 KiB
C

/*
* Copyright (c) 1999-2018 Apple Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this
* file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
/*
* Mach Operating System
* Copyright (c) 1991,1990 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
#include <assert.h>
#include <stdlib.h>
#include <mach/message.h>
#include "write.h"
#include "utils.h"
#include "global.h"
#include "error.h"
#ifndef max
#define max(a,b) (((a) > (b)) ? (a) : (b))
#endif /* max */
void WriteLogDefines(FILE *file, string_t who);
void WriteIdentificationString(FILE *file);
static void WriteFieldDecl(FILE *file, argument_t *arg);
static void
WriteKPD_Iterator(FILE *file, boolean_t in, boolean_t varying, argument_t *arg, boolean_t bracket)
{
ipc_type_t *it = arg->argType;
char string[MAX_STR_LEN];
fprintf(file, "\t{\n");
fprintf(file, "\t %s\t*ptr;\n", it->itKPDType);
fprintf(file, "\t int\ti");
if (varying && !in)
fprintf(file, ", j");
fprintf(file, ";\n\n");
if (in)
sprintf(string, "In%dP", arg->argRequestPos);
else
sprintf(string, "OutP");
fprintf(file, "\t ptr = &%s->%s[0];\n", string, arg->argMsgField);
if (varying) {
argument_t *count = arg->argCount;
if (in)
fprintf(file, "\t for (i = 0; i < In%dP->%s; ptr++, i++) %s\n", count->argRequestPos, count->argMsgField, (bracket) ? "{" : "");
else {
fprintf(file, "\t j = min(%d, ", it->itKPD_Number);
if (akCheck(count->argKind, akbVarNeeded))
fprintf(file, "%s);\n", count->argName);
else
fprintf(file, "%s->%s);\n", string, count->argMsgField);
fprintf(file, "\t for (i = 0; i < j; ptr++, i++) %s\n", (bracket) ? "{" : "");
}
}
else
fprintf(file, "\t for (i = 0; i < %d; ptr++, i++) %s\n", it->itKPD_Number, (bracket) ? "{" : "");
}
static void
WriteMyIncludes(FILE *file, statement_t *stats)
{
if (ServerHeaderFileName == strNULL || UseSplitHeaders)
WriteIncludes(file, FALSE, FALSE);
if (ServerHeaderFileName != strNULL)
{
char *cp;
/* Strip any leading path from ServerHeaderFileName. */
cp = strrchr(ServerHeaderFileName, '/');
if (cp == 0)
cp = ServerHeaderFileName;
else
cp++; /* skip '/' */
fprintf(file, "#include \"%s\"\n", cp);
}
if (ServerHeaderFileName == strNULL || UseSplitHeaders)
WriteImplImports(file, stats, FALSE);
if (UseEventLogger) {
if (IsKernelServer) {
fprintf(file, "#if\t__MigKernelSpecificCode\n");
fprintf(file, "#include <mig_debug.h>\n");
fprintf(file, "#endif\t/* __MigKernelSpecificCode */\n");
}
fprintf(file, "#if MIG_DEBUG\n");
fprintf(file, "#include <mach/mig_log.h>\n");
fprintf(file, "#endif /* MIG_DEBUG */\n");
}
fprintf(file, "\n");
}
static void
WriteGlobalDecls(FILE *file)
{
if (BeAnsiC) {
fprintf(file, "#define novalue void\n");
}
else {
fprintf(file, "#if\t%s\n", NewCDecl);
fprintf(file, "#define novalue void\n");
fprintf(file, "#else\n");
fprintf(file, "#define novalue int\n");
fprintf(file, "#endif\t/* %s */\n", NewCDecl);
}
fprintf(file, "\n");
if (RCSId != strNULL)
WriteRCSDecl(file, strconcat(SubsystemName, "_server"), RCSId);
/* Used for locations in the request message, *not* reply message.
Reply message locations aren't dependent on IsKernelServer. */
if (IsKernelServer) {
fprintf(file, "#if\t__MigKernelSpecificCode\n");
fprintf(file, "#define msgh_request_port\tmsgh_remote_port\n");
fprintf(file, "#define MACH_MSGH_BITS_REQUEST(bits)");
fprintf(file, "\tMACH_MSGH_BITS_REMOTE(bits)\n");
fprintf(file, "#define msgh_reply_port\t\tmsgh_local_port\n");
fprintf(file, "#define MACH_MSGH_BITS_REPLY(bits)");
fprintf(file, "\tMACH_MSGH_BITS_LOCAL(bits)\n");
fprintf(file, "#else\n");
}
fprintf(file, "#define msgh_request_port\tmsgh_local_port\n");
fprintf(file, "#define MACH_MSGH_BITS_REQUEST(bits)");
fprintf(file, "\tMACH_MSGH_BITS_LOCAL(bits)\n");
fprintf(file, "#define msgh_reply_port\t\tmsgh_remote_port\n");
fprintf(file, "#define MACH_MSGH_BITS_REPLY(bits)");
fprintf(file, "\tMACH_MSGH_BITS_REMOTE(bits)\n");
if (IsKernelServer) {
fprintf(file, "#endif /* __MigKernelSpecificCode */\n");
}
fprintf(file, "\n");
if (UseEventLogger)
WriteLogDefines(file, "MACH_MSG_LOG_SERVER");
fprintf(file, "#define MIG_RETURN_ERROR(X, code)\t{\\\n");
fprintf(file, "\t\t\t\t((mig_reply_error_t *)X)->RetCode = code;\\\n");
fprintf(file, "\t\t\t\t((mig_reply_error_t *)X)->NDR = NDR_record;\\\n");
fprintf(file, "\t\t\t\treturn;\\\n");
fprintf(file, "\t\t\t\t}\n");
fprintf(file, "\n");
}
static void
WriteForwardDeclarations(FILE *file, statement_t *stats)
{
statement_t *stat;
fprintf(file, "/* Forward Declarations */\n\n");
for (stat = stats; stat != stNULL; stat = stat->stNext)
if (stat->stKind == skRoutine) {
fprintf(file, "\nmig_internal novalue _X%s\n", stat->stRoutine->rtName);
fprintf(file, "\t(mach_msg_header_t *InHeadP, mach_msg_header_t *OutHeadP);\n");
}
fprintf(file, "\n");
}
static void
WriteMIGCheckDefines(FILE *file)
{
fprintf(file, "#define\t__MIG_check__Request__%s_subsystem__ 1\n", SubsystemName);
fprintf(file, "\n");
}
static void
WriteNDRDefines(FILE *file)
{
fprintf(file, "#define\t__NDR_convert__Request__%s_subsystem__ 1\n", SubsystemName);
fprintf(file, "\n");
}
static void
WriteProlog(FILE *file, statement_t *stats)
{
WriteIdentificationString(file);
fprintf(file, "\n");
fprintf(file, "/* Module %s */\n", SubsystemName);
fprintf(file, "\n");
WriteMIGCheckDefines(file);
if (CheckNDR)
WriteNDRDefines(file);
WriteMyIncludes(file, stats);
WriteBogusDefines(file);
WriteApplDefaults(file, "Rcv");
WriteGlobalDecls(file);
if (ServerHeaderFileName == strNULL) {
WriteRequestTypes(file, stats);
WriteReplyTypes(file, stats);
WriteServerReplyUnion(file, stats);
}
}
static void
WriteSymTabEntries(FILE *file, statement_t *stats)
{
statement_t *stat;
u_int current = 0;
for (stat = stats; stat != stNULL; stat = stat->stNext)
if (stat->stKind == skRoutine) {
int num = stat->stRoutine->rtNumber;
char *name = stat->stRoutine->rtName;
while (++current <= num)
fprintf(file,"\t\t\t{ \"\", 0, 0 },\n");
fprintf(file, "\t{ \"%s\", %d, _X%s },\n", name, SubsystemBase + current - 1, name);
}
while (++current <= rtNumber)
fprintf(file,"\t{ \"\", 0, 0 },\n");
}
static void
WriteRoutineEntries(FILE *file, statement_t *stats)
{
u_int current = 0;
statement_t *stat;
char *sig_array, *rt_name;
int arg_count, descr_count;
int offset = 0;
size_t serverSubsysNameLen = strlen(ServerSubsys);
fprintf(file, "\t{\n");
for (stat = stats; stat != stNULL; stat = stat->stNext)
if (stat->stKind == skRoutine) {
routine_t *rt = stat->stRoutine;
size_t rtNameLen = strlen(rt->rtName);
// Include length of rt->rtName in calculation of necessary buffer size, since that string
// is actually written into the buffer along with the Server Subsystem name.
sig_array = (char *) malloc(serverSubsysNameLen + rtNameLen + 80);
rt_name = (char *) malloc(rtNameLen + 5);
while (current++ < rt->rtNumber)
fprintf(file, "\t\t{0, 0, 0, 0, 0, 0},\n");
// NOTE: if either of the two string constants in the sprintf() function calls below get
// much longer, be sure to increase the constant '80' (in the first malloc() call) to ensure
// that the allocated buffer is large enough. (Currently, I count 66 characters in the first
// string constant, 65 in the second. 80 ought to be enough for now...)
if (UseRPCTrap) {
sprintf(sig_array, "&%s.arg_descriptor[%d], (mach_msg_size_t)sizeof(__Reply__%s_t)", ServerSubsys, offset, rt->rtName);
}
else {
sprintf(sig_array, "(routine_arg_descriptor_t)0, (mach_msg_size_t)sizeof(__Reply__%s_t)", rt->rtName);
}
sprintf(rt_name, "_X%s", rt->rtName);
descr_count = rtCountArgDescriptors(rt->rtArgs, &arg_count);
offset += descr_count;
WriteRPCRoutineDescriptor(file, rt, arg_count, (UseRPCTrap) ? descr_count : 0, rt_name, sig_array);
fprintf(file, ",\n");
free(sig_array);
free(rt_name);
}
while (current++ < rtNumber)
fprintf(file, "\t\t{0, 0, 0, 0, 0, 0},\n");
fprintf(file, "\t}");
}
static void
WriteArgDescriptorEntries(FILE *file, statement_t *stats)
{
statement_t *stat;
fprintf(file, ",\n\n\t{\n");
for (stat = stats; stat != stNULL; stat = stat->stNext)
if (stat->stKind == skRoutine) {
routine_t *rt = stat->stRoutine;
/* For each arg of the routine, write an arg descriptor:
*/
WriteRPCRoutineArgDescriptor(file, rt);
}
fprintf(file, "\t},\n\n");
}
/*
* Write out the description of this subsystem, for use in direct RPC
*/
static void
WriteSubsystem(FILE *file, statement_t *stats)
{
statement_t *stat;
int descr_count = 0;
for (stat = stats; stat != stNULL; stat = stat->stNext)
if (stat->stKind == skRoutine) {
routine_t *rt = stat->stRoutine;
descr_count += rtCountArgDescriptors(rt->rtArgs, (int *) 0);
}
fprintf(file, "\n");
if (ServerHeaderFileName == strNULL) {
WriteMigExternal(file);
fprintf(file, "boolean_t %s(", ServerDemux);
if (BeAnsiC) {
fprintf(file, "\n\t\tmach_msg_header_t *InHeadP,");
fprintf(file, "\n\t\tmach_msg_header_t *OutHeadP");
}
fprintf(file, ");\n\n");
WriteMigExternal(file);
fprintf(file, "mig_routine_t %s_routine(", ServerDemux);
if (BeAnsiC) {
fprintf(file, "\n\t\tmach_msg_header_t *InHeadP");
}
fprintf(file, ");\n\n");
}
fprintf(file, "\n/* Description of this subsystem, for use in direct RPC */\n");
if (ServerHeaderFileName == strNULL) {
fprintf(file, "const struct %s {\n", ServerSubsys);
if (UseRPCTrap) {
fprintf(file, "\tstruct subsystem *\tsubsystem;\t/* Reserved for system use */\n");
}
else {
fprintf(file, "\tmig_server_routine_t \tserver;\t/* Server routine */\n");
}
fprintf(file, "\tmach_msg_id_t\tstart;\t/* Min routine number */\n");
fprintf(file, "\tmach_msg_id_t\tend;\t/* Max routine number + 1 */\n");
fprintf(file, "\tunsigned int\tmaxsize;\t/* Max msg size */\n");
if (UseRPCTrap) {
fprintf(file, "\tvm_address_t\tbase_addr;\t/* Base address */\n");
fprintf(file, "\tstruct rpc_routine_descriptor\t/*Array of routine descriptors */\n");
}
else {
fprintf(file, "\tvm_address_t\treserved;\t/* Reserved */\n");
fprintf(file, "\tstruct routine_descriptor\t/*Array of routine descriptors */\n");
}
fprintf(file, "\t\troutine[%d];\n", rtNumber);
if (UseRPCTrap) {
fprintf(file, "\tstruct rpc_routine_arg_descriptor\t/*Array of arg descriptors */\n");
fprintf(file, "\t\targ_descriptor[%d];\n", descr_count);
}
fprintf(file, "} %s = {\n", ServerSubsys);
}
else {
fprintf(file, "const struct %s %s = {\n", ServerSubsys, ServerSubsys);
}
if (UseRPCTrap) {
fprintf(file, "\t0,\n");
}
else {
fprintf(file, "\t%s_routine,\n", ServerDemux);
}
fprintf(file, "\t%d,\n", SubsystemBase);
fprintf(file, "\t%d,\n", SubsystemBase + rtNumber);
fprintf(file, "\t(mach_msg_size_t)sizeof(union __ReplyUnion__%s),\n", ServerSubsys);
if (UseRPCTrap) {
fprintf(file, "\t(vm_address_t)&%s,\n", ServerSubsys);
}
else {
fprintf(file, "\t(vm_address_t)0,\n");
}
WriteRoutineEntries(file, stats);
if (UseRPCTrap)
WriteArgDescriptorEntries(file, stats);
else
fprintf(file, "\n");
fprintf(file, "};\n\n");
}
#if NOT_CURRENTLY_USED
static void
WriteArraySizes(FILE *file, statement_t *stats)
{
u_int current = 0;
statement_t *stat;
for (stat = stats; stat != stNULL; stat = stat->stNext)
if (stat->stKind == skRoutine) {
routine_t *rt = stat->stRoutine;
while (current++ < rt->rtNumber)
fprintf(file, "\t\t0,\n");
fprintf(file, "\t\t(mach_msg_size_t)sizeof(__Reply__%s_t),\n", rt->rtName);
}
while (current++ < rtNumber)
fprintf(file, "\t\t\t0,\n");
}
#endif /* NOT_CURRENTLY_USED */
void
WriteServerRequestUnion(FILE *file, statement_t *stats)
{
statement_t *stat;
fprintf(file, "\n");
fprintf(file, "/* union of all requests */\n\n");
fprintf(file, "#ifndef __RequestUnion__%s__defined\n", ServerSubsys);
fprintf(file, "#define __RequestUnion__%s__defined\n", ServerSubsys);
fprintf(file, "union __RequestUnion__%s {\n", ServerSubsys);
for (stat = stats; stat != stNULL; stat = stat->stNext) {
if (stat->stKind == skRoutine) {
routine_t *rt;
rt = stat->stRoutine;
fprintf(file, "\t__Request__%s_t Request_%s;\n", rt->rtName, rt->rtName);
}
}
fprintf(file, "};\n");
fprintf(file, "#endif /* __RequestUnion__%s__defined */\n", ServerSubsys);
}
void
WriteServerReplyUnion(FILE *file, statement_t *stats)
{
statement_t *stat;
fprintf(file, "\n");
fprintf(file, "/* union of all replies */\n\n");
fprintf(file, "#ifndef __ReplyUnion__%s__defined\n", ServerSubsys);
fprintf(file, "#define __ReplyUnion__%s__defined\n", ServerSubsys);
fprintf(file, "union __ReplyUnion__%s {\n", ServerSubsys);
for (stat = stats; stat != stNULL; stat = stat->stNext) {
if (stat->stKind == skRoutine) {
routine_t *rt;
rt = stat->stRoutine;
fprintf(file, "\t__Reply__%s_t Reply_%s;\n", rt->rtName, rt->rtName);
}
}
fprintf(file, "};\n");
fprintf(file, "#endif /* __ReplyUnion__%s__defined */\n", ServerSubsys);
}
static void
WriteDispatcher(FILE *file, statement_t *stats)
{
/*
* Write the subsystem stuff.
*/
fprintf(file, "\n");
WriteSubsystem(file, stats);
/*
* Then, the server routine
*/
fprintf(file, "mig_external boolean_t %s\n", ServerDemux);
if (BeAnsiC) {
fprintf(file, "\t(mach_msg_header_t *InHeadP, mach_msg_header_t *OutHeadP)\n");
}
else {
fprintf(file, "#if\t%s\n", NewCDecl);
fprintf(file, "\t(mach_msg_header_t *InHeadP, mach_msg_header_t *OutHeadP)\n");
fprintf(file, "#else\n");
fprintf(file, "\t(InHeadP, OutHeadP)\n");
fprintf(file, "\tmach_msg_header_t *InHeadP, *OutHeadP;\n");
fprintf(file, "#endif\t/* %s */\n", NewCDecl);
}
fprintf(file, "{\n");
fprintf(file, "\t/*\n");
fprintf(file, "\t * typedef struct {\n");
fprintf(file, "\t * \tmach_msg_header_t Head;\n");
fprintf(file, "\t * \tNDR_record_t NDR;\n");
fprintf(file, "\t * \tkern_return_t RetCode;\n");
fprintf(file, "\t * } mig_reply_error_t;\n");
fprintf(file, "\t */\n");
fprintf(file, "\n");
fprintf(file, "\tmig_routine_t routine;\n");
fprintf(file, "\n");
fprintf(file, "\tOutHeadP->msgh_bits = ");
fprintf(file, "MACH_MSGH_BITS(MACH_MSGH_BITS_REPLY(InHeadP->msgh_bits), 0);\n");
fprintf(file, "\tOutHeadP->msgh_remote_port = InHeadP->msgh_reply_port;\n");
fprintf(file, "\t/* Minimal size: routine() will update it if different */\n");
fprintf(file, "\tOutHeadP->msgh_size = (mach_msg_size_t)sizeof(mig_reply_error_t);\n");
fprintf(file, "\tOutHeadP->msgh_local_port = MACH_PORT_NULL;\n");
fprintf(file, "\tOutHeadP->msgh_id = InHeadP->msgh_id + 100;\n");
fprintf(file, "\tOutHeadP->msgh_reserved = 0;\n");
fprintf(file, "\n");
fprintf(file, "\tif ((InHeadP->msgh_id > %d) || (InHeadP->msgh_id < %d) ||\n", SubsystemBase + rtNumber - 1, SubsystemBase);
fprintf(file, "\t ((routine = %s.routine[InHeadP->msgh_id - %d].stub_routine) == 0)) {\n", ServerSubsys, SubsystemBase);
fprintf(file, "\t\t((mig_reply_error_t *)OutHeadP)->NDR = NDR_record;\n");
fprintf(file, "\t\t((mig_reply_error_t *)OutHeadP)->RetCode = MIG_BAD_ID;\n");
if (UseEventLogger) {
fprintf(file, "#if MIG_DEBUG\n");
fprintf(file, "\t\tLOG_ERRORS(MACH_MSG_LOG_SERVER, MACH_MSG_ERROR_UNKNOWN_ID,\n");
fprintf(file, "\t\t\t&InHeadP->msgh_id, __FILE__, __LINE__);\n");
fprintf(file, "#endif /* MIG_DEBUG */\n");
}
fprintf(file, "\t\treturn FALSE;\n");
fprintf(file, "\t}\n");
/* Call appropriate routine */
fprintf(file, "\t(*routine) (InHeadP, OutHeadP);\n");
fprintf(file, "\treturn TRUE;\n");
fprintf(file, "}\n");
fprintf(file, "\n");
/*
* Then, the <subsystem>_server_routine routine
*/
fprintf(file, "mig_external mig_routine_t %s_routine\n", ServerDemux);
if (BeAnsiC) {
fprintf(file, "\t(mach_msg_header_t *InHeadP)\n");
}
else {
fprintf(file, "#if\t%s\n", NewCDecl);
fprintf(file, "\t(mach_msg_header_t *InHeadP)\n");
fprintf(file, "#else\n");
fprintf(file, "\t(InHeadP)\n");
fprintf(file, "\tmach_msg_header_t *InHeadP;\n");
fprintf(file, "#endif\t/* %s */\n", NewCDecl);
}
fprintf(file, "{\n");
fprintf(file, "\tint msgh_id;\n");
fprintf(file, "\n");
fprintf(file, "\tmsgh_id = InHeadP->msgh_id - %d;\n", SubsystemBase);
fprintf(file, "\n");
fprintf(file, "\tif ((msgh_id > %d) || (msgh_id < 0))\n", rtNumber - 1);
fprintf(file, "\t\treturn 0;\n");
fprintf(file, "\n");
fprintf(file, "\treturn %s.routine[msgh_id].stub_routine;\n", ServerSubsys);
fprintf(file, "}\n");
/* symtab */
if (GenSymTab) {
fprintf(file,"\nmig_symtab_t _%sSymTab[] = {\n",SubsystemName);
WriteSymTabEntries(file,stats);
fprintf(file,"};\n");
fprintf(file,"int _%sSymTabBase = %d;\n",SubsystemName,SubsystemBase);
fprintf(file,"int _%sSymTabEnd = %d;\n",SubsystemName,SubsystemBase+rtNumber);
}
}
#if NOT_CURRENTLY_USED
/*
* Returns the return type of the server-side work function.
* Suitable for "extern %s serverfunc()".
*/
static char *
ServerSideType(routine_t *rt)
{
return rt->rtRetCode->argType->itTransType;
}
#endif /* NOT_CURRENTLY_USED */
static void
WriteRetCode(FILE *file, argument_t *ret)
{
ipc_type_t *it = ret->argType;
if (akCheck(ret->argKind, akbVarNeeded)) {
fprintf(file, "\t%s %s;\n", it->itTransType, ret->argVarName);
}
}
static void
WriteLocalVarDecl(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
ipc_type_t *btype = it->itElement;
if (IS_VARIABLE_SIZED_UNTYPED(it))
fprintf(file, "\t%s %s[%d]", btype->itTransType, arg->argVarName, btype->itNumber ? it->itNumber/btype->itNumber : 0);
else if (IS_MULTIPLE_KPD(it)) {
if (btype->itTransType != strNULL)
fprintf(file, "\t%s %s[%d]", btype->itTransType, arg->argVarName, it->itKPD_Number);
else
/* arrays of ool or oolport */
fprintf(file, "\tvoid *%s[%d]", arg->argVarName, it->itKPD_Number);
}
else
fprintf(file, "\t%s %s", it->itTransType, arg->argVarName);
}
#if NOT_CURRENTLY_USED
static void
WriteServerArgDecl(FILE *file, argument_t *arg)
{
fprintf(file, "%s %s%s", arg->argType->itTransType, arg->argByReferenceServer ? "*" : "", arg->argVarName);
}
#endif /* NOT_CURRENTLY_USED */
/*
* Writes the local variable declarations which are always
* present: InP, OutP, the server-side work function.
*/
static void
WriteVarDecls(FILE *file, routine_t *rt)
{
int i;
fprintf(file, "\tRequest *In0P = (Request *) InHeadP;\n");
for (i = 1; i <= rt->rtMaxRequestPos; i++)
fprintf(file, "\tRequest *In%dP;\n", i);
fprintf(file, "\tReply *OutP = (Reply *) OutHeadP;\n");
/* if reply is variable, we may need msgh_size_delta and msgh_size */
if (rt->rtNumReplyVar > 1)
fprintf(file, "\tunsigned int msgh_size;\n");
if (rt->rtMaxReplyPos > 0)
fprintf(file, "\tunsigned int msgh_size_delta;\n");
if (rt->rtNumReplyVar > 1 || rt->rtMaxReplyPos > 0)
fprintf(file, "\n");
if (rt->rtServerImpl) {
fprintf(file, "\tmach_msg_max_trailer_t *TrailerP;\n");
fprintf(file, "#if\t__MigTypeCheck\n");
fprintf(file, "\tunsigned int trailer_size __attribute__((unused));\n");
fprintf(file, "#endif\t/* __MigTypeCheck */\n");
}
fprintf(file, "#ifdef\t__MIG_check__Request__%s_t__defined\n", rt->rtName);
fprintf(file, "\tkern_return_t check_result;\n");
fprintf(file, "#endif\t/* __MIG_check__Request__%s_t__defined */\n", rt->rtName);
fprintf(file, "\n");
}
static void
WriteReplyInit(FILE *file, routine_t *rt)
{
fprintf(file, "\n");
if (rt->rtNumReplyVar > 1 || rt->rtMaxReplyPos)
/* WritheAdjustMsgSize() has been executed at least once! */
fprintf(file, "\tOutP = (Reply *) OutHeadP;\n");
if (!rt->rtSimpleReply) /* complex reply message */
fprintf(file, "\tOutP->Head.msgh_bits |= MACH_MSGH_BITS_COMPLEX;\n");
if (rt->rtNumReplyVar == 0) {
fprintf(file, "\tOutP->Head.msgh_size = ");
rtMinReplySize(file, rt, "Reply");
fprintf(file, ";\n");
}
else if (rt->rtNumReplyVar > 1)
fprintf(file, "\tOutP->Head.msgh_size = msgh_size;\n");
/* the case rt->rtNumReplyVar = 1 is taken care of in WriteAdjustMsgSize() */
}
static void
WriteRetCArgCheckError(FILE *file, routine_t *rt)
{
fprintf(file, "\tif (!(In0P->Head.msgh_bits & MACH_MSGH_BITS_COMPLEX) &&\n");
fprintf(file, "\t (In0P->Head.msgh_size == (mach_msg_size_t)sizeof(mig_reply_error_t)))\n");
fprintf(file, "\t{\n");
}
static void
WriteRetCArgFinishError(FILE *file, routine_t *rt)
{
argument_t *retcode = rt->rtRetCArg;
fprintf(file, "\treturn;\n");
fprintf(file, "\t}\n");
retcode->argMsgField = "KERN_SUCCESS";
}
static void
WriteCheckHead(FILE *file, routine_t *rt)
{
fprintf(file, "#if\t__MigTypeCheck\n");
if (rt->rtNumRequestVar > 0)
fprintf(file, "\tmsgh_size = In0P->Head.msgh_size;\n");
if (rt->rtSimpleRequest) {
/* Expecting a simple message. */
fprintf(file, "\tif ((In0P->Head.msgh_bits & MACH_MSGH_BITS_COMPLEX) ||\n");
if (rt->rtNumRequestVar > 0) {
fprintf(file, "\t (msgh_size < ");
rtMinRequestSize(file, rt, "__Request");
fprintf(file, ") || (msgh_size > (mach_msg_size_t)sizeof(__Request)))\n");
}
else
fprintf(file, "\t (In0P->Head.msgh_size != (mach_msg_size_t)sizeof(__Request)))\n");
}
else {
/* Expecting a complex message. */
fprintf(file, "\tif (");
if (rt->rtRetCArg != argNULL)
fprintf(file, "(");
fprintf(file, "!(In0P->Head.msgh_bits & MACH_MSGH_BITS_COMPLEX) ||\n");
fprintf(file, "\t (In0P->msgh_body.msgh_descriptor_count != %d) ||\n", rt->rtRequestKPDs);
if (rt->rtNumRequestVar > 0) {
fprintf(file, "\t (msgh_size < ");
rtMinRequestSize(file, rt, "__Request");
fprintf(file, ") || (msgh_size > (mach_msg_size_t)sizeof(__Request))");
}
else
fprintf(file, "\t (In0P->Head.msgh_size != (mach_msg_size_t)sizeof(__Request))");
if (rt->rtRetCArg == argNULL)
fprintf(file, ")\n");
else {
fprintf(file, ") &&\n");
fprintf(file, "\t ((In0P->Head.msgh_bits & MACH_MSGH_BITS_COMPLEX) ||\n");
fprintf(file, "\t In0P->Head.msgh_size != (mach_msg_size_t)sizeof(mig_reply_error_t) ||\n");
fprintf(file, "\t ((mig_reply_error_t *)In0P)->RetCode == KERN_SUCCESS))\n");
}
}
fprintf(file, "\t\treturn MIG_BAD_ARGUMENTS;\n");
fprintf(file, "#endif\t/* __MigTypeCheck */\n");
fprintf(file, "\n");
}
void
WriteRequestNDRConvertIntRepArgCond(FILE *file, argument_t *arg)
{
routine_t *rt = arg->argRoutine;
fprintf(file, "defined(__NDR_convert__int_rep__Request__%s_t__%s__defined)", rt->rtName, arg->argMsgField);
}
void
WriteRequestNDRConvertCharRepArgCond(FILE *file, argument_t *arg)
{
routine_t *rt = arg->argRoutine;
if (akIdent(arg->argKind) != akeCount && akIdent(arg->argKind) != akeCountInOut)
fprintf(file, "defined(__NDR_convert__char_rep__Request__%s_t__%s__defined)", rt->rtName, arg->argMsgField);
else
fprintf(file, "0");
}
void
WriteRequestNDRConvertFloatRepArgCond(FILE *file, argument_t *arg)
{
routine_t *rt = arg->argRoutine;
if (akIdent(arg->argKind) != akeCount && akIdent(arg->argKind) != akeCountInOut)
fprintf(file, "defined(__NDR_convert__float_rep__Request__%s_t__%s__defined)", rt->rtName, arg->argMsgField);
else
fprintf(file, "0");
}
void
WriteRequestNDRConvertIntRepArgDecl(FILE *file, argument_t *arg)
{
WriteNDRConvertArgDecl(file, arg, "int_rep", "Request");
}
void
WriteRequestNDRConvertCharRepArgDecl(FILE *file, argument_t *arg)
{
if (akIdent(arg->argKind) != akeCount && akIdent(arg->argKind) != akeCountInOut)
WriteNDRConvertArgDecl(file, arg, "char_rep", "Request");
}
void
WriteRequestNDRConvertFloatRepArgDecl(FILE *file, argument_t *arg)
{
if (akIdent(arg->argKind) != akeCount && akIdent(arg->argKind) != akeCountInOut)
WriteNDRConvertArgDecl(file, arg, "float_rep", "Request");
}
void
WriteRequestNDRConvertArgUse(FILE *file, argument_t *arg, char *convert)
{
routine_t *rt = arg->argRoutine;
argument_t *count = arg->argCount;
char argname[MAX_STR_LEN];
if ((akIdent(arg->argKind) == akeCount || akIdent(arg->argKind) == akeCountInOut) &&
(arg->argParent && akCheck(arg->argParent->argKind, akbSendNdr)))
return;
if (arg->argKPD_Type == MACH_MSG_OOL_DESCRIPTOR) {
if (count && !arg->argSameCount && !strcmp(convert, "int_rep")) {
fprintf(file, "#if defined(__NDR_convert__int_rep__Request__%s_t__%s__defined)\n", rt->rtName, count->argMsgField);
fprintf(file, "\t\t__NDR_convert__int_rep__Request__%s_t__%s(&In%dP->%s, In%dP->NDR.int_rep);\n", rt->rtName, count->argMsgField, count->argRequestPos, count->argMsgField, count->argRequestPos);
fprintf(file, "#endif\t/* __NDR_convert__int_rep__Request__%s_t__%s__defined */\n", rt->rtName, count->argMsgField);
}
sprintf(argname, "(%s)(In%dP->%s.address)", FetchServerType(arg->argType), arg->argRequestPos, arg->argMsgField);
}
else {
sprintf(argname, "&In%dP->%s", arg->argRequestPos, arg->argMsgField);
}
fprintf(file, "#if defined(__NDR_convert__%s__Request__%s_t__%s__defined)\n", convert, rt->rtName, arg->argMsgField);
fprintf(file, "\t\t__NDR_convert__%s__Request__%s_t__%s(%s, In0P->NDR.%s", convert, rt->rtName, arg->argMsgField, argname, convert);
if (count)
fprintf(file, ", In%dP->%s", count->argRequestPos, count->argMsgField);
fprintf(file, ");\n");
fprintf(file, "#endif\t/* __NDR_convert__%s__Request__%s_t__%s__defined */\n", convert, rt->rtName, arg->argMsgField);
}
void
WriteRequestNDRConvertIntRepOneArgUse(FILE *file, argument_t *arg)
{
routine_t *rt = arg->argRoutine;
fprintf(file, "#if defined(__NDR_convert__int_rep__Request__%s_t__%s__defined)\n", rt->rtName, arg->argMsgField);
fprintf(file, "\tif (In0P->NDR.int_rep != NDR_record.int_rep)\n");
fprintf(file, "\t\t__NDR_convert__int_rep__Request__%s_t__%s(&In%dP->%s, In%dP->NDR.int_rep);\n", rt->rtName, arg->argMsgField, arg->argRequestPos, arg->argMsgField, arg->argRequestPos);
fprintf(file, "#endif\t/* __NDR_convert__int_rep__Request__%s_t__%s__defined */\n", rt->rtName, arg->argMsgField);
}
void
WriteRequestNDRConvertIntRepArgUse(FILE *file, argument_t *arg)
{
WriteRequestNDRConvertArgUse(file, arg, "int_rep");
}
void
WriteRequestNDRConvertCharRepArgUse(FILE *file, argument_t *arg)
{
if (akIdent(arg->argKind) != akeCount && akIdent(arg->argKind) != akeCountInOut)
WriteRequestNDRConvertArgUse(file, arg, "char_rep");
}
void
WriteRequestNDRConvertFloatRepArgUse(FILE *file, argument_t *arg)
{
if (akIdent(arg->argKind) != akeCount && akIdent(arg->argKind) != akeCountInOut)
WriteRequestNDRConvertArgUse(file, arg, "float_rep");
}
static void
WriteCalcArgSize(FILE *file, argument_t *arg)
{
ipc_type_t *ptype = arg->argType;
if (PackMsg == FALSE) {
fprintf(file, "%d", ptype->itTypeSize + ptype->itPadSize);
return;
}
if (IS_OPTIONAL_NATIVE(ptype))
fprintf(file, "(In%dP->__Present__%s ? _WALIGNSZ_(%s) : 0)" , arg->argRequestPos, arg->argMsgField, ptype->itServerType);
else {
ipc_type_t *btype = ptype->itElement;
argument_t *count = arg->argCount;
int multiplier = btype->itTypeSize;
if (btype->itTypeSize % itWordAlign != 0)
fprintf(file, "_WALIGN_");
fprintf(file, "(");
if (multiplier > 1)
fprintf(file, "%d * ", multiplier);
fprintf(file, "In%dP->%s", count->argRequestPos, count->argMsgField);
fprintf(file, ")");
}
}
static void
WriteCheckArgSize(FILE *file, routine_t *rt, argument_t *arg, const char *comparator)
{
ipc_type_t *ptype = arg->argType;
fprintf(file, "\tif (((msgh_size - ");
rtMinRequestSize(file, rt, "__Request");
fprintf(file, ") ");
if (PackMsg == FALSE) {
fprintf(file, "%s %d)", comparator, ptype->itTypeSize + ptype->itPadSize);
} else if (IS_OPTIONAL_NATIVE(ptype)) {
fprintf(file, "%s (In%dP->__Present__%s ? _WALIGNSZ_(%s) : 0))" , comparator, arg->argRequestPos, arg->argMsgField, ptype->itServerType);
} else {
ipc_type_t *btype = ptype->itElement;
argument_t *count = arg->argCount;
int multiplier = btype->itTypeSize;
if (multiplier > 1)
fprintf(file, "/ %d ", multiplier);
fprintf(file, "< In%dP->%s) ||\n", count->argRequestPos, count->argMsgField);
fprintf(file, "\t (msgh_size %s ", comparator);
rtMinRequestSize(file, rt, "__Request");
fprintf(file, " + ");
WriteCalcArgSize(file, arg);
fprintf(file, ")");
}
fprintf(file, ")\n\t\treturn MIG_BAD_ARGUMENTS;\n");
}
static void
WriteCheckMsgSize(FILE *file, argument_t *arg)
{
routine_t *rt = arg->argRoutine;
if (arg->argCount && !arg->argSameCount)
WriteRequestNDRConvertIntRepOneArgUse(file, arg->argCount);
if (arg->argRequestPos == rt->rtMaxRequestPos) {
fprintf(file, "#if\t__MigTypeCheck\n");
/* verify that the user-code-provided count does not exceed the maximum count allowed by the type. */
fprintf(file, "\t" "if ( In%dP->%s > %d )\n", arg->argCount->argRequestPos, arg->argCount->argMsgField, arg->argType->itNumber);
fputs("\t\t" "return MIG_BAD_ARGUMENTS;\n", file);
/* ...end... */
WriteCheckArgSize(file, rt, arg, "!=");
fprintf(file, "#endif\t/* __MigTypeCheck */\n");
}
else {
/* If there aren't any more variable-sized arguments after this,
then we must check for exact msg-size and we don't need to
update msgh_size. */
boolean_t LastVarArg = arg->argRequestPos+1 == rt->rtNumRequestVar;
/* calculate the actual size in bytes of the data field. note
that this quantity must be a multiple of four. hence, if
the base type size isn't a multiple of four, we have to
round up. note also that btype->itNumber must
divide btype->itTypeSize (see itCalculateSizeInfo). */
fprintf(file, "\tmsgh_size_delta = ");
WriteCalcArgSize(file, arg);
fprintf(file, ";\n");
fprintf(file, "#if\t__MigTypeCheck\n");
/* verify that the user-code-provided count does not exceed the maximum count allowed by the type. */
fprintf(file, "\t" "if ( In%dP->%s > %d )\n", arg->argCount->argRequestPos, arg->argCount->argMsgField, arg->argType->itNumber);
fputs("\t\t" "return MIG_BAD_ARGUMENTS;\n", file);
/* ...end... */
/* Don't decrement msgh_size until we've checked that
it won't underflow. */
WriteCheckArgSize(file, rt, arg, LastVarArg ? "!=" : "<");
if (!LastVarArg)
fprintf(file, "\tmsgh_size -= msgh_size_delta;\n");
fprintf(file, "#endif\t/* __MigTypeCheck */\n");
}
fprintf(file, "\n");
}
static char *
InArgMsgField(argument_t *arg, char *str)
{
static char buffer[MAX_STR_LEN];
char who[20] = {0};
/*
* Inside the kernel, the request and reply port fields
* really hold ipc_port_t values, not mach_port_t values.
* Hence we must cast the values.
*/
if (!(arg->argFlags & flRetCode)) {
if (akCheck(arg->argKind, akbServerImplicit))
sprintf(who, "TrailerP->");
else
sprintf(who, "In%dP->", arg->argRequestPos);
}
#ifdef MIG_KERNEL_PORT_CONVERSION
if (IsKernelServer &&
((akIdent(arg->argKind) == akeRequestPort) ||
(akIdent(arg->argKind) == akeReplyPort)))
sprintf(buffer, "(ipc_port_t) %s%s%s", who, str, (arg->argSuffix != strNULL) ? arg->argSuffix : arg->argMsgField);
else
#endif
sprintf(buffer, "%s%s%s", who, str, (arg->argSuffix != strNULL) ? arg->argSuffix : arg->argMsgField);
return buffer;
}
static void
WriteExtractArgValue(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
string_t recast;
#ifdef MIG_KERNEL_PORT_CONVERSION
if (IsKernelServer && it->itPortType && streql(it->itServerType, "ipc_port_t")
&& akIdent(arg->argKind) != akeRequestPort
&& akIdent(arg->argKind) != akeReplyPort)
recast = "(mach_port_t)";
else
#endif
recast = "";
if (it->itInTrans != strNULL)
WriteCopyType(file, it, FALSE, "%s", "/* %s */ %s(%s%s)", arg->argVarName, it->itInTrans, recast, InArgMsgField(arg, ""));
else
WriteCopyType(file, it, FALSE, "%s", "/* %s */ %s%s", arg->argVarName, recast, InArgMsgField(arg, ""));
fprintf(file, "\n");
}
/*
* argKPD_Extract discipline for Port types.
*/
static void
WriteExtractKPD_port(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
char *recast = "";
WriteKPD_Iterator(file, TRUE, it->itVarArray, arg, FALSE);
/* translation function do not apply to complex types */
#ifdef MIG_KERNEL_PORT_CONVERSION
if (IsKernelServer)
recast = "(mach_port_t)";
#endif
fprintf(file, "\t\t%s[i] = %sptr->name;\n", arg->argVarName, recast);
fprintf(file, "\t}\n");
}
/*
* argKPD_Extract discipline for out-of-line types.
*/
static void
WriteExtractKPD_ool(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
WriteKPD_Iterator(file, TRUE, it->itVarArray, arg, FALSE);
fprintf(file, "\t\t%s[i] = ptr->address;\n", arg->argVarName);
fprintf(file, "\t}\n");
}
/*
* argKPD_Extract discipline for out-of-line Port types.
*/
static void
WriteExtractKPD_oolport(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
WriteKPD_Iterator(file, TRUE, it->itVarArray, arg, FALSE);
fprintf(file, "\t\t%s[i] = ptr->address;\n", arg->argVarName);
fprintf(file, "\t}\n");
if (arg->argPoly != argNULL && akCheckAll(arg->argPoly->argKind, akbSendRcv)) {
argument_t *poly = arg->argPoly;
char *pref = poly->argByReferenceServer ? "*" : "";
fprintf(file, "\t%s%s = In%dP->%s[0].disposition;\n", pref, poly->argVarName, arg->argRequestPos, arg->argMsgField);
}
}
static void
WriteInitializeCount(FILE *file, argument_t *arg)
{
ipc_type_t *ptype = arg->argParent->argType;
ipc_type_t *btype = ptype->itElement;
identifier_t newstr;
/*
* Initialize 'count' argument for variable-length inline OUT parameter
* with maximum allowed number of elements.
*/
if (akCheck(arg->argKind, akbVarNeeded))
newstr = arg->argMsgField;
else
newstr = (identifier_t)strconcat("OutP->", arg->argMsgField);
fprintf(file, "\t%s = ", newstr);
if (IS_MULTIPLE_KPD(ptype))
fprintf(file, "%d;\n", ptype->itKPD_Number);
else
fprintf(file, "%d;\n", btype->itNumber? ptype->itNumber/btype->itNumber : 0);
/*
* If the user passed in a count, then we use the minimum.
* We can't let the user completely override our maximum,
* or the user might convince the server to overwrite the buffer.
*/
if (arg->argCInOut != argNULL) {
char *msgfield = InArgMsgField(arg->argCInOut, "");
fprintf(file, "\tif (%s < %s)\n", msgfield, newstr);
fprintf(file, "\t\t%s = %s;\n", newstr, msgfield);
}
fprintf(file, "\n");
}
static void
WriteAdjustRequestMsgPtr(FILE *file, argument_t *arg)
{
ipc_type_t *ptype = arg->argType;
if (PackMsg == FALSE) {
fprintf(file, "\t*In%dPP = In%dP = (__Request *) ((pointer_t) In%dP);\n\n", arg->argRequestPos+1, arg->argRequestPos+1, arg->argRequestPos);
return;
}
fprintf(file, "\t*In%dPP = In%dP = (__Request *) ((pointer_t) In%dP + msgh_size_delta - ", arg->argRequestPos+1, arg->argRequestPos+1, arg->argRequestPos);
if (IS_OPTIONAL_NATIVE(ptype))
fprintf(file, "_WALIGNSZ_(%s)", ptype->itUserType);
else
fprintf(file, "%d", ptype->itTypeSize + ptype->itPadSize);
fprintf(file, ");\n\n");
}
static void
WriteCheckRequestTrailerArgs(FILE *file, routine_t *rt)
{
argument_t *arg;
if (rt->rtServerImpl)
WriteCheckTrailerHead(file, rt, FALSE);
for (arg = rt->rtArgs; arg != argNULL; arg = arg->argNext) {
if (akCheck(arg->argKind, akbServerImplicit))
WriteCheckTrailerSize(file, FALSE, arg);
}
}
static void
WriteExtractArg(FILE *file, argument_t *arg)
{
if (akCheckAll(arg->argKind, akbSendRcv|akbVarNeeded)) {
if (akCheck(arg->argKind, akbSendKPD))
(*arg->argKPD_Extract)(file, arg);
else
WriteExtractArgValue(file, arg);
}
if ((akIdent(arg->argKind) == akeCount) &&
akCheck(arg->argKind, akbReturnSnd)) {
ipc_type_t *ptype = arg->argParent->argType;
/*
* the count will be initialized to 0 in the case of
* unbounded arrays (MigInLine = TRUE): this is because
* the old interface used to pass to the target procedure
* the maximum in-line size (it was 2048 bytes)
*/
if (IS_VARIABLE_SIZED_UNTYPED(ptype) ||
IS_MIG_INLINE_EMUL(ptype) ||
(IS_MULTIPLE_KPD(ptype) && ptype->itVarArray))
WriteInitializeCount(file, arg);
}
}
static void
WriteServerCallArg(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
boolean_t NeedClose = FALSE;
u_int elemsize = 0;
string_t at = (arg->argByReferenceServer ||
it->itNativePointer) ? "&" : "";
string_t star = (arg->argByReferenceServer) ? " *" : "";
string_t msgfield =
(arg->argSuffix != strNULL) ? arg->argSuffix : arg->argMsgField;
if ((it->itInTrans != strNULL) &&
akCheck(arg->argKind, akbSendRcv) &&
!akCheck(arg->argKind, akbVarNeeded)) {
fprintf(file, "%s%s(", at, it->itInTrans);
NeedClose = TRUE;
}
if (akCheckAll(arg->argKind, akbVarNeeded|akbServerArg))
fprintf(file, "%s%s", at, arg->argVarName);
else if (akCheckAll(arg->argKind, akbSendRcv|akbSendKPD)) {
if (!it->itInLine)
/* recast the void *, although it is not necessary */
fprintf(file, "(%s%s)%s(%s)", it->itTransType, star, at, InArgMsgField(arg, ""));
else
#ifdef MIG_KERNEL_PORT_CONVERSION
if (IsKernelServer && streql(it->itServerType, "ipc_port_t"))
/* recast the port to the kernel internal form value */
fprintf(file, "(ipc_port_t%s)%s(%s)", star, at, InArgMsgField(arg, ""));
else
#endif
fprintf(file, "%s%s", at, InArgMsgField(arg, ""));
}
else if (akCheck(arg->argKind, akbSendRcv)) {
if (IS_OPTIONAL_NATIVE(it)) {
fprintf(file, "(%s ? ", InArgMsgField(arg, "__Present__"));
fprintf(file, "%s%s.__Real__%s : %s)", at, InArgMsgField(arg, ""), arg->argMsgField, it->itBadValue);
}
else {
if (akIdent(arg->argKind) == akeCount && arg->argParent) {
char *suffix = arg->argParent->argSuffix;
ipc_type_t *elemType = arg->argParent->argType->itElement;
/* temporarily squash any name suffix such as ".address" (we'll be adding our own) */
arg->argParent->argSuffix = NULL;
switch (arg->argParent->argKPD_Type) {
case MACH_MSG_OOL_PORTS_DESCRIPTOR:
/* count of the number of descriptors */
fprintf(file, "%s%s.count", at, InArgMsgField(arg->argParent, ""));
break;
case MACH_MSG_OOL_DESCRIPTOR:
/* descriptor buffer size / element size */
if (!(arg->argByReferenceServer || it->itNativePointer)) {
fprintf(file, "%s%s.size", at, InArgMsgField(arg->argParent, ""));
elemsize = ((elemType->itNumber * elemType->itSize) + 7) / 8;
if (elemsize > 1) {
fprintf(file, " / %d", elemsize);
}
} else {
fprintf(file, "%s%s", at, InArgMsgField(arg, ""));
}
break;
default:
fprintf(file, "%s%s", at, InArgMsgField(arg, ""));
break;
}
arg->argParent->argSuffix = suffix;
} else {
fprintf(file, "%s%s", at, InArgMsgField(arg, ""));
}
}
}
else if (akCheckAll(arg->argKind, akbReturnSnd|akbReturnKPD)) {
if (!it->itInLine)
/* recast the void *, although it is not necessary */
fprintf(file, "(%s%s)%s(OutP->%s)", it->itTransType, star, at, msgfield);
else
#ifdef MIG_KERNEL_PORT_CONVERSION
if (IsKernelServer && streql(it->itServerType, "ipc_port_t"))
/* recast the port to the kernel internal form value */
fprintf(file, "(mach_port_t%s)%s(OutP->%s)", star, at, msgfield);
else
#endif
fprintf(file, "%sOutP->%s", at, msgfield);
}
else if (akCheck(arg->argKind, akbReturnSnd))
fprintf(file, "%sOutP->%s", at, msgfield);
if (NeedClose)
fprintf(file, ")");
}
/*
* Shrunk version of WriteServerCallArg, to implement the RetCode functionality:
* we have received a mig_reply_error_t, therefore we want to call the target
* routine with all 0s except for the error code (and the implicit data).
* We know that we are a SimpleRoutine.
*/
static void
WriteConditionalCallArg(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
boolean_t NeedClose = FALSE;
if ((it->itInTrans != strNULL) &&
akCheck(arg->argKind, akbSendRcv) &&
!akCheck(arg->argKind, akbVarNeeded)) {
fprintf(file, "%s(", it->itInTrans);
NeedClose = TRUE;
}
if (akCheck(arg->argKind, akbSendRcv)) {
if (akIdent(arg->argKind) == akeRequestPort ||
akCheck(arg->argKind, akbServerImplicit))
fprintf(file, "%s", InArgMsgField(arg, ""));
else if (akIdent(arg->argKind) == akeRetCode)
fprintf(file, "((mig_reply_error_t *)In0P)->RetCode");
else
fprintf(file, "(%s)(0)", it->itTransType);
}
if (NeedClose)
fprintf(file, ")");
}
static void
WriteDestroyArg(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
/*
* Deallocate IN/INOUT out-of-line args if specified by "auto" flag.
*
* We also have to deallocate in the cases where the target routine
* is given a itInLine semantic whereas the underlying transmission
* was out-of-line
*/
if ((argIsIn(arg) && akCheck(arg->argKind, akbSendKPD|akbReturnKPD) &&
arg->argKPD_Type == MACH_MSG_OOL_DESCRIPTOR &&
(arg->argFlags & flAuto))
||
IS_MIG_INLINE_EMUL(it)
) {
/*
* Deallocate only if out-of-line.
*/
argument_t *count = arg->argCount;
ipc_type_t *btype = it->itElement;
int multiplier = btype->itNumber ? btype->itSize / (8 * btype->itNumber) : 0;
if (IsKernelServer) {
fprintf(file, "#if __MigKernelSpecificCode\n");
fprintf(file, "\tvm_map_copy_discard(%s);\n", InArgMsgField(arg, ""));
fprintf(file, "#else\n");
}
fprintf(file, "\tmig_deallocate((vm_offset_t) %s, ", InArgMsgField(arg, ""));
if (it->itVarArray) {
char *suffix = arg->argSuffix;
/*
* temporarily squash any name suffix such as ".address"
* (we'll be adding our own)
*/
arg->argSuffix = NULL;
switch (arg->argKPD_Type) {
case MACH_MSG_OOL_PORTS_DESCRIPTOR:
if (multiplier > 1) {
fprintf(file, "%d * ", multiplier);
}
fprintf(file, "%s.count);\n", InArgMsgField(arg, ""));
break;
case MACH_MSG_OOL_DESCRIPTOR:
fprintf(file, "%s.size);\n", InArgMsgField(arg, ""));
break;
default:
if (multiplier > 1) {
fprintf(file, "%d * ", multiplier);
}
fprintf(file, "%s);\n", InArgMsgField(count, ""));
break;
}
arg->argSuffix = suffix;
}
else
fprintf(file, "%d);\n", (it->itNumber * it->itSize + 7) / 8);
if (IsKernelServer) {
fprintf(file, "#endif /* __MigKernelSpecificCode */\n");
}
fprintf(file, "\t%s = (void *) 0;\n", InArgMsgField(arg, ""));
fprintf(file, "\tIn%dP->%s.%s = (mach_msg_size_t) 0;\n", arg->argRequestPos, arg->argMsgField, (RPCPortArray(arg) ? "count" : "size"));
}
else {
if (akCheck(arg->argKind, akbVarNeeded))
fprintf(file, "\t%s(%s);\n", it->itDestructor, arg->argVarName);
else
fprintf(file, "\t%s(%s);\n", it->itDestructor, InArgMsgField(arg, ""));
}
}
static void
WriteDestroyPortArg(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
/*
* If a translated port argument occurs in the body of a request
* message, and the message is successfully processed, then the
* port right should be deallocated. However, the called function
* didn't see the port right; it saw the translation. So we have
* to release the port right for it.
*
* The test over it->itInTrans will exclude any complex type
* made out of ports
*/
if ((it->itInTrans != strNULL) &&
(it->itOutName == MACH_MSG_TYPE_PORT_SEND)) {
fprintf(file, "\n");
fprintf(file, "\tif (IP_VALID((ipc_port_t)%s))\n", InArgMsgField(arg, ""));
fprintf(file, "\t\tipc_port_release_send((ipc_port_t)%s);\n", InArgMsgField(arg, ""));
}
}
/*
* Check whether WriteDestroyPortArg would generate any code for arg.
*/
boolean_t
CheckDestroyPortArg(argument_t *arg)
{
ipc_type_t *it = arg->argType;
if ((it->itInTrans != strNULL) &&
(it->itOutName == MACH_MSG_TYPE_PORT_SEND)) {
return TRUE;
}
return FALSE;
}
static void
WriteServerCall(FILE *file, routine_t *rt, void (*func)(FILE *, argument_t *))
{
argument_t *arg = rt->rtRetCode;
ipc_type_t *it = arg->argType;
boolean_t NeedClose = FALSE;
fprintf(file, "\t");
if (akCheck(arg->argKind, akbVarNeeded))
fprintf(file, "%s = ", arg->argMsgField);
else
fprintf(file, "OutP->%s = ", arg->argMsgField);
if (it->itOutTrans != strNULL) {
fprintf(file, "%s(", it->itOutTrans);
NeedClose = TRUE;
}
fprintf(file, "%s(", rt->rtServerName);
WriteList(file, rt->rtArgs, func, akbServerArg, ", ", "");
if (NeedClose)
fprintf(file, ")");
fprintf(file, ");\n");
}
static void
WriteCheckReturnValue(FILE *file, routine_t *rt)
{
argument_t *arg = rt->rtRetCode;
char string[MAX_STR_LEN];
if (akCheck(arg->argKind, akbVarNeeded))
sprintf(string, "%s", arg->argMsgField);
else
sprintf(string, "OutP->%s", arg->argMsgField);
fprintf(file, "\tif (%s != KERN_SUCCESS) {\n", string);
fprintf(file, "\t\tMIG_RETURN_ERROR(OutP, %s);\n", string);
fprintf(file, "\t}\n");
}
/*
* WriteInitKPD_port, WriteInitKPD_ool, WriteInitKPD_oolport
* initializes the OutP KPD fields (this job cannot be done once
* the target routine has been called, otherwise informations
* would be lost)
*/
/*
* argKPD_Init discipline for Port types.
*/
static void
WriteInitKPD_port(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
char *subindex = "";
boolean_t close = FALSE;
char firststring[MAX_STR_LEN];
char string[MAX_STR_LEN];
if (IS_MULTIPLE_KPD(it)) {
WriteKPD_Iterator(file, FALSE, FALSE, arg, TRUE);
(void)sprintf(firststring, "\t*ptr");
(void)sprintf(string, "\tptr->");
subindex = "[i]";
close = TRUE;
}
else {
(void)sprintf(firststring, "OutP->%s", arg->argMsgField);
(void)sprintf(string, "OutP->%s.", arg->argMsgField);
}
fprintf(file, "#if\tUseStaticTemplates\n");
fprintf(file, "\t%s = %s;\n", firststring, arg->argTTName);
fprintf(file, "#else\t/* UseStaticTemplates */\n");
if (IS_MULTIPLE_KPD(it) && it->itVarArray)
fprintf(file, "\t%sname = MACH_PORT_NULL;\n", string);
if (arg->argPoly == argNULL) {
if (IsKernelServer) {
fprintf(file, "#if __MigKernelSpecificCode\n");
fprintf(file, "\t%sdisposition = %s;\n", string, it->itOutNameStr);
fprintf(file, "#else\n");
}
fprintf(file, "\t%sdisposition = %s;\n", string, it->itInNameStr);
if (IsKernelServer)
fprintf(file, "#endif /* __MigKernelSpecificCode */\n");
}
fprintf(file, "#if !(defined(KERNEL) && defined(__LP64__))\n");
fprintf(file, "\t%spad1 = 0;\n", string);
fprintf(file, "#endif\n");
fprintf(file, "\t%spad2 = 0;\n", string);
fprintf(file, "\t%stype = MACH_MSG_PORT_DESCRIPTOR;\n", string);
fprintf(file, "#if defined(KERNEL)\n");
fprintf(file, "\t%spad_end = 0;\n", string);
fprintf(file, "#endif\n");
fprintf(file, "#endif\t/* UseStaticTemplates */\n");
if (close)
fprintf(file, "\t }\n\t}\n");
fprintf(file, "\n");
}
/*
* argKPD_Init discipline for out-of-line types.
*/
static void
WriteInitKPD_ool(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
char firststring[MAX_STR_LEN];
char string[MAX_STR_LEN];
boolean_t VarArray;
u_int howmany, howbig;
if (IS_MULTIPLE_KPD(it)) {
WriteKPD_Iterator(file, FALSE, FALSE, arg, TRUE);
(void)sprintf(firststring, "\t*ptr");
(void)sprintf(string, "\tptr->");
VarArray = it->itElement->itVarArray;
howmany = it->itElement->itNumber;
howbig = it->itElement->itSize;
}
else {
(void)sprintf(firststring, "OutP->%s", arg->argMsgField);
(void)sprintf(string, "OutP->%s.", arg->argMsgField);
VarArray = it->itVarArray;
howmany = it->itNumber;
howbig = it->itSize;
}
fprintf(file, "#if\tUseStaticTemplates\n");
fprintf(file, "\t%s = %s;\n", firststring, arg->argTTName);
fprintf(file, "#else\t/* UseStaticTemplates */\n");
if (!VarArray)
fprintf(file, "\t%ssize = %d;\n", string, (howmany * howbig + 7)/8);
if (arg->argDeallocate != d_MAYBE)
fprintf(file, "\t%sdeallocate = %s;\n", string, (arg->argDeallocate == d_YES) ? "TRUE" : "FALSE");
fprintf(file, "\t%scopy = %s;\n", string, (arg->argFlags & flPhysicalCopy) ? "MACH_MSG_PHYSICAL_COPY" : "MACH_MSG_VIRTUAL_COPY");
#ifdef ALIGNMENT
fprintf(file, "\t%salignment = MACH_MSG_ALIGN_%d;\n", string, arg->argMsgField, (howbig < 8) ? 1 : howbig / 8);
#endif
fprintf(file, "\t%spad1 = 0;\n", string);
fprintf(file, "\t%stype = MACH_MSG_OOL_DESCRIPTOR;\n", string);
fprintf(file, "#if defined(KERNEL) && !defined(__LP64__)\n");
fprintf(file, "\t%spad_end = 0;\n", string);
fprintf(file, "#endif\n");
fprintf(file, "#endif\t/* UseStaticTemplates */\n");
if (IS_MULTIPLE_KPD(it))
fprintf(file, "\t }\n\t}\n");
fprintf(file, "\n");
}
/*
* argKPD_Init discipline for out-of-line Port types.
*/
static void
WriteInitKPD_oolport(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
boolean_t VarArray;
ipc_type_t *howit;
u_int howmany;
char firststring[MAX_STR_LEN];
char string[MAX_STR_LEN];
if (IS_MULTIPLE_KPD(it)) {
WriteKPD_Iterator(file, FALSE, FALSE, arg, TRUE);
(void)sprintf(firststring, "\t*ptr");
(void)sprintf(string, "\tptr->");
VarArray = it->itElement->itVarArray;
howmany = it->itElement->itNumber;
howit = it->itElement;
}
else {
(void)sprintf(firststring, "OutP->%s", arg->argMsgField);
(void)sprintf(string, "OutP->%s.", arg->argMsgField);
VarArray = it->itVarArray;
howmany = it->itNumber;
howit = it;
}
fprintf(file, "#if\tUseStaticTemplates\n");
fprintf(file, "\t%s = %s;\n", firststring, arg->argTTName);
fprintf(file, "#else\t/* UseStaticTemplates */\n");
if (!VarArray)
fprintf(file, "\t%scount = %d;\n", string, howmany);
if (arg->argPoly == argNULL) {
if (IsKernelServer) {
fprintf(file, "#if\t__MigKernelSpecificCode\n");
fprintf(file, "\t%sdisposition = %s;\n", string, howit->itOutNameStr);
fprintf(file, "#else\n");
}
fprintf(file, "\t%sdisposition = %s;\n", string, howit->itInNameStr);
if (IsKernelServer)
fprintf(file, "#endif /* __MigKernelSpecificCode */\n");
}
if (arg->argDeallocate != d_MAYBE)
fprintf(file, "\t%sdeallocate = %s;\n", string, (arg->argDeallocate == d_YES) ? "TRUE" : "FALSE");
fprintf(file, "\t%stype = MACH_MSG_OOL_PORTS_DESCRIPTOR;\n", string);
fprintf(file, "#endif\t/* UseStaticTemplates */\n");
if (IS_MULTIPLE_KPD(it))
fprintf(file, "\t }\n\t}\n");
fprintf(file, "\n");
}
static void
WriteInitKPDValue(FILE *file, argument_t *arg)
{
(*arg->argKPD_Init)(file, arg);
}
static void
WriteAdjustMsgCircular(FILE *file, argument_t *arg)
{
fprintf(file, "\n");
fprintf(file,"#if\t__MigKernelSpecificCode\n");
if (arg->argType->itOutName == MACH_MSG_TYPE_POLYMORPHIC)
fprintf(file, "\tif (%s == MACH_MSG_TYPE_PORT_RECEIVE)\n", arg->argPoly->argVarName);
/*
* The carried port right can be accessed in OutP->XXXX. Normally
* the server function stuffs it directly there. If it is InOut,
* then it has already been copied into the reply message.
* If the server function deposited it into a variable (perhaps
* because the reply message is variable-sized) then it has already
* been copied into the reply message.
*
* The old MiG does not check for circularity in the case of
* array of ports. So do I ...
*/
fprintf(file, "\t if (IP_VALID((ipc_port_t) In0P->Head.msgh_reply_port) &&\n");
fprintf(file, "\t IP_VALID((ipc_port_t) OutP->%s.name) &&\n", arg->argMsgField);
fprintf(file, "\t ipc_port_check_circularity((ipc_port_t) OutP->%s.name, (ipc_port_t) In0P->Head.msgh_reply_port))\n", arg->argMsgField);
fprintf(file, "\t\tOutP->Head.msgh_bits |= MACH_MSGH_BITS_CIRCULAR;\n");
fprintf(file, "#endif /* __MigKernelSpecificCode */\n");
}
/*
* argKPD_Pack discipline for Port types.
*/
static void
WriteKPD_port(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
char *subindex = "";
char *recast = "";
boolean_t close = FALSE;
char string[MAX_STR_LEN];
ipc_type_t *real_it;
if (akCheck(arg->argKind, akbVarNeeded)) {
if (IS_MULTIPLE_KPD(it)) {
WriteKPD_Iterator(file, FALSE, it->itVarArray, arg, TRUE);
(void)sprintf(string, "\tptr->");
subindex = "[i]";
close = TRUE;
real_it = it->itElement;
}
else {
(void)sprintf(string, "OutP->%s.", arg->argMsgField);
real_it = it;
}
#ifdef MIG_KERNEL_PORT_CONVERSIONS
if (IsKernelServer && streql(real_it->itTransType, "ipc_port_t"))
recast = "(mach_port_t)";
#endif
if (it->itOutTrans != strNULL && !close)
fprintf(file, "\t%sname = (mach_port_t)%s(%s);\n", string, it->itOutTrans, arg->argVarName);
else
fprintf(file, "\t%sname = %s%s%s;\n", string, recast, arg->argVarName, subindex);
if (arg->argPoly != argNULL && akCheckAll(arg->argPoly->argKind, akbReturnSnd)) {
argument_t *poly = arg->argPoly;
if (akCheck(arg->argPoly->argKind, akbVarNeeded))
fprintf(file, "\t%sdisposition = %s;\n", string, poly->argVarName);
else if (close)
fprintf(file, "\t%sdisposition = OutP->%s;\n", string, poly->argSuffix);
}
if (close)
fprintf(file, "\t }\n\t}\n");
fprintf(file, "\n");
}
else if (arg->argPoly != argNULL && akCheckAll(arg->argPoly->argKind, akbReturnSnd|akbVarNeeded))
fprintf(file, "\tOutP->%s.disposition = %s;\n", arg->argMsgField, arg->argPoly->argVarName);
/*
* If this is a KernelServer, and the reply message contains
* a receive right, we must check for the possibility of a
* port/message circularity. If queueing the reply message
* would cause a circularity, we mark the reply message
* with the circular bit.
*/
if (IsKernelServer && !(IS_MULTIPLE_KPD(it)) &&
((arg->argType->itOutName == MACH_MSG_TYPE_PORT_RECEIVE) ||
(arg->argType->itOutName == MACH_MSG_TYPE_POLYMORPHIC)))
WriteAdjustMsgCircular(file, arg);
}
/*
* argKPD_Pack discipline for out-of-line types.
*/
static void
WriteKPD_ool(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
char string[MAX_STR_LEN];
boolean_t VarArray;
argument_t *count;
u_int howbig;
char *subindex;
if (IS_MULTIPLE_KPD(it)) {
WriteKPD_Iterator(file, FALSE, it->itVarArray, arg, TRUE);
(void)sprintf(string, "\tptr->");
VarArray = it->itElement->itVarArray;
count = arg->argSubCount;
howbig = it->itElement->itSize;
subindex = "[i]";
}
else {
(void)sprintf(string, "OutP->%s.", arg->argMsgField);
VarArray = it->itVarArray;
count = arg->argCount;
howbig = it->itSize;
subindex = "";
}
if (akCheck(arg->argKind, akbVarNeeded))
fprintf(file, "\t%saddress = (void *)%s%s;\n", string, arg->argMsgField, subindex);
if (arg->argDealloc != argNULL)
if (akCheck(arg->argDealloc->argKind, akbVarNeeded) || IS_MULTIPLE_KPD(it))
fprintf(file, "\t%sdeallocate = %s;\n", string, arg->argDealloc->argVarName);
if (VarArray) {
fprintf(file, "\t%ssize = ", string);
if (akCheck(count->argKind, akbVarNeeded))
fprintf(file, "%s%s", count->argName, subindex);
else
fprintf(file, "OutP->%s%s", count->argMsgField, subindex);
if (count->argMultiplier > 1 || howbig > 8)
fprintf(file, " * %d;\n", count->argMultiplier * howbig / 8);
else
fprintf(file, ";\n");
}
if (IS_MULTIPLE_KPD(it)) {
fprintf(file, "\t }\n");
if (it->itVarArray && !it->itElement->itVarArray) {
fprintf(file, "\t for (i = j; i < %d; ptr++, i++)\n", it->itKPD_Number);
/* since subordinate arrays aren't variable, they are initialized from template:
here we must no-op 'em */
fprintf(file, "\t\tptr->size = 0;\n");
}
fprintf(file, "\t}\n");
}
fprintf(file, "\n");
}
/*
* argKPD_Pack discipline for out-of-line Port types.
*/
static void
WriteKPD_oolport(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
boolean_t VarArray;
argument_t *count;
char *subindex, string[MAX_STR_LEN];
if (IS_MULTIPLE_KPD(it)) {
WriteKPD_Iterator(file, FALSE, it->itVarArray, arg, TRUE);
(void)sprintf(string, "\tptr->");
VarArray = it->itElement->itVarArray;
count = arg->argSubCount;
subindex = "[i]";
}
else {
(void)sprintf(string, "OutP->%s.", arg->argMsgField);
VarArray = it->itVarArray;
count = arg->argCount;
subindex = "";
}
if (akCheck(arg->argKind, akbVarNeeded))
fprintf(file, "\t%saddress = (void *)%s%s;\n", string, arg->argMsgField, subindex);
if (arg->argDealloc != argNULL)
if (akCheck(arg->argDealloc->argKind, akbVarNeeded) || IS_MULTIPLE_KPD(it))
fprintf(file, "\t%sdeallocate = %s;\n", string, arg->argDealloc->argVarName);
if (VarArray) {
fprintf(file, "\t%scount = ", string);
if (akCheck(count->argKind, akbVarNeeded))
fprintf(file, "%s%s;\n", count->argName, subindex);
else
fprintf(file, "OutP->%s%s;\n", count->argMsgField, subindex);
}
if (arg->argPoly != argNULL && akCheckAll(arg->argPoly->argKind, akbReturnSnd))
if (akCheck(arg->argPoly->argKind, akbVarNeeded) || IS_MULTIPLE_KPD(it))
fprintf(file, "\t%sdisposition = %s;\n", string, arg->argPoly->argVarName);
if (IS_MULTIPLE_KPD(it)) {
fprintf(file, "\t }\n");
if (it->itVarArray && !it->itElement->itVarArray) {
fprintf(file, "\t for (i = j; i < %d; ptr++, i++)\n", it->itKPD_Number);
/* since subordinate arrays aren't variable, they are initialized from template:
here we must no-op 'em */
fprintf(file, "\t%scount = 0;\n", string);
}
fprintf(file, "\t}\n");
}
fprintf(file, "\n");
}
/*
* argKPD_TypeCheck discipline for Port types.
*/
static void
WriteTCheckKPD_port(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
char *tab = "";
char string[MAX_STR_LEN];
boolean_t close = FALSE;
if (IS_MULTIPLE_KPD(it)) {
WriteKPD_Iterator(file, TRUE, FALSE, arg, TRUE);
(void)sprintf(string, "ptr->");
tab = "\t";
close = TRUE;
}
else
(void)sprintf(string, "In%dP->%s.", arg->argRequestPos, arg->argMsgField);
fprintf(file, "\t%sif (%stype != MACH_MSG_PORT_DESCRIPTOR", tab, string);
/*
* We can't check disposition on varArray
* (because some of the entries could be empty).
*/
if (!it->itVarArray) {
if (arg->argPoly != argNULL) {
switch (it->itOutName) {
case MACH_MSG_TYPE_MOVE_RECEIVE:
fprintf(file, " || \n\t%s %sdisposition != MACH_MSG_TYPE_MOVE_RECEIVE", tab, string);
break;
case MACH_MSG_TYPE_MOVE_SEND_ONCE:
fprintf(file, " || (\n\t%s %sdisposition != MACH_MSG_TYPE_MOVE_SEND_ONCE", tab, string);
fprintf(file, " && \n\t%s %sdisposition != MACH_MSG_TYPE_MAKE_SEND_ONCE)", tab, string);
break;
case MACH_MSG_TYPE_MOVE_SEND:
fprintf(file, " || (\n\t%s %sdisposition != MACH_MSG_TYPE_MOVE_SEND", tab, string);
fprintf(file, " && \n\t%s %sdisposition != MACH_MSG_TYPE_MAKE_SEND", tab, string);
fprintf(file, " && \n\t%s %sdisposition != MACH_MSG_TYPE_COPY_SEND)", tab, string);
break;
}
}
else {
fprintf(file, " ||\n\t%s %sdisposition != %s", tab, string, it->itOutNameStr);
}
}
fprintf(file, ")\n");
fprintf(file, "\t\treturn MIG_TYPE_ERROR;\n");
if (close)
fprintf(file, "\t }\n\t}\n");
}
/*
* argKPD_TypeCheck discipline for out-of-line types.
*/
static void
WriteTCheckKPD_ool(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
char *tab, string[MAX_STR_LEN];
boolean_t test;
u_int howmany, howbig;
if (IS_MULTIPLE_KPD(it)) {
WriteKPD_Iterator(file, TRUE, FALSE, arg, TRUE);
tab = "\t\t\t";
sprintf(string, "ptr->");
howmany = it->itElement->itNumber;
howbig = it->itElement->itSize;
test = !it->itVarArray && !it->itElement->itVarArray;
}
else {
tab = "";
sprintf(string, "In%dP->%s.", arg->argRequestPos, arg->argMsgField);
howmany = it->itNumber;
howbig = it->itSize;
test = !it->itVarArray;
}
fprintf(file, "\t%sif (%stype != MACH_MSG_OOL_DESCRIPTOR", tab, string);
if (test) {
/* if VarArray we may use no-op; if itElement->itVarArray size might change */
fprintf(file, " ||\n\t%s %ssize != %d", tab, string, (howmany * howbig + 7)/8);
}
fprintf(file, ")\n");
fprintf(file, "\t\t%s" "return MIG_TYPE_ERROR;\n", tab);
if (IS_MULTIPLE_KPD(it))
fprintf(file, "\t }\n\t}\n");
}
/*
* argKPD_TypeCheck discipline for out-of-line Port types.
*/
static void
WriteTCheckKPD_oolport(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
char *tab, string[MAX_STR_LEN];
boolean_t test;
u_int howmany;
char *howstr;
if (IS_MULTIPLE_KPD(it)) {
WriteKPD_Iterator(file, TRUE, FALSE, arg, TRUE);
tab = "\t";
sprintf(string, "ptr->");
howmany = it->itElement->itNumber;
test = !it->itVarArray && !it->itElement->itVarArray;
howstr = it->itElement->itOutNameStr;
}
else {
tab = "";
sprintf(string, "In%dP->%s.", arg->argRequestPos, arg->argMsgField);
howmany = it->itNumber;
test = !it->itVarArray;
howstr = it->itOutNameStr;
}
fprintf(file, "\t%sif (%stype != MACH_MSG_OOL_PORTS_DESCRIPTOR", tab, string);
if (test)
/* if VarArray we may use no-op; if itElement->itVarArray size might change */
fprintf(file, " ||\n\t%s %scount != %d", tab, string, howmany);
if (arg->argPoly == argNULL)
fprintf(file, " ||\n\t%s %sdisposition != %s", tab, string, howstr);
fprintf(file, ")\n");
fprintf(file, "\t\treturn MIG_TYPE_ERROR;\n");
if (IS_MULTIPLE_KPD(it))
fprintf(file, "\t }\n\t}\n");
}
/*************************************************************
* Writes code to check that the type of each of the arguments
* in the reply message is what is expected. Called by
* WriteRoutine for each in && typed argument in the request message.
*************************************************************/
static void
WriteTypeCheck(FILE *file, argument_t *arg)
{
fprintf(file, "#if\t__MigTypeCheck\n");
(*arg->argKPD_TypeCheck)(file, arg);
fprintf(file, "#endif\t/* __MigTypeCheck */\n");
}
static void
WritePackArgValueNormal(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
if (IS_VARIABLE_SIZED_UNTYPED(it) || it->itNoOptArray) {
if (it->itString) {
/*
* Copy variable-size C string with mig_strncpy.
* Save the string length (+ 1 for trailing 0)
* in the argument`s count field.
*/
fprintf(file, "#ifdef USING_MIG_STRNCPY_ZEROFILL\n");
fprintf(file, "\tif (mig_strncpy_zerofill != NULL) {\n");
fprintf(file, "\t\tOutP->%s = (%s) mig_strncpy_zerofill(OutP->%s, %s, %d);\n", arg->argCount->argMsgField, arg->argCount->argType->itTransType, arg->argMsgField, arg->argVarName, it->itNumber);
fprintf(file, "\t} else {\n");
fprintf(file, "#endif /* USING_MIG_STRNCPY_ZEROFILL */\n");
fprintf(file, "\t\tOutP->%s = (%s) mig_strncpy(OutP->%s, %s, %d);\n", arg->argCount->argMsgField, arg->argCount->argType->itTransType, arg->argMsgField, arg->argVarName, it->itNumber);
fprintf(file, "#ifdef USING_MIG_STRNCPY_ZEROFILL\n");
fprintf(file, "\t}\n");
fprintf(file, "#endif /* USING_MIG_STRNCPY_ZEROFILL */\n");
fprintf(file, "\tOutP->%sOffset = 0;\n", arg->argMsgField);
}
else if (it->itNoOptArray)
fprintf(file, "\t(void)memcpy((char *) OutP->%s, (const char *) %s, %d);\n", arg->argMsgField, arg->argVarName, it->itTypeSize);
else {
argument_t *count = arg->argCount;
ipc_type_t *btype = it->itElement;
identifier_t newstr;
/* Note btype->itNumber == count->argMultiplier */
fprintf(file, "\t(void)memcpy((char *) OutP->%s, (const char *) %s, ", arg->argMsgField, arg->argVarName);
if (btype->itTypeSize > 1)
fprintf(file, "%d * ", btype->itTypeSize);
/* count is a akbVarNeeded if arg is akbVarNeeded */
if (akCheck(count->argKind, akbVarNeeded))
newstr = count->argVarName;
else
newstr = (identifier_t)strconcat("OutP->", count->argMsgField);
fprintf(file, "%s);\n", newstr);
}
}
else if (it->itOutTrans != strNULL)
WriteCopyType(file, it, TRUE, "OutP->%s", "/* %s */ %s(%s)", arg->argMsgField, it->itOutTrans, arg->argVarName);
else
WriteCopyType(file, it, TRUE, "OutP->%s", "/* %s */ %s", arg->argMsgField, arg->argVarName);
if (arg->argPadName != NULL && it->itPadSize != 0) {
fprintf(file, "\t for (int i = 0; i < %d; i++)\n", it->itPadSize);
fprintf(file, "\t\t OutP->%s[i] = 0;\n", arg->argPadName);
}
}
static void
WritePackArgValueVariable(FILE *file, argument_t *arg)
{
ipc_type_t *it = arg->argType;
/*
* only itString are treated here so far
*/
if (it->itString) {
/*
* Emit logic to call strlen to calculate the size of the argument, and ensure that it fits within the 32-bit result field
* in the Reply, when targeting a 64-bit architecture. If a 32-bit architecture is the target, we emit code to just call
* strlen() directly (since it'll return a 32-bit value that is guaranteed to fit).
*/
fputs("#ifdef __LP64__\n", file);
fprintf(file, "\t{\n"
"\t\t" "size_t strLength = strlen(OutP->%s) + 1;\n", arg->argMsgField);
fputs( "\t\t" "if (strLength > 0xffffffff)\n"
"\t\t\t" "MIG_RETURN_ERROR(OutP, MIG_BAD_ARGUMENTS);\n", file);
fprintf(file, "\t\t" "OutP->%s = (mach_msg_type_number_t) strLength;\n"
"\t}\n", arg->argCount->argMsgField);
fputs("#else\n", file);
fprintf(file, "\tOutP->%s = (mach_msg_type_number_t) strlen(OutP->%s) + 1;\n", arg->argCount->argMsgField, arg->argMsgField);
fputs("#endif /* __LP64__ */\n", file);
}
}
static void
WriteCopyArgValue(FILE *file, argument_t *arg)
{
fprintf(file, "\n");
WriteCopyType(file, arg->argType, TRUE, "/* %d */ OutP->%s", "In%dP->%s", arg->argRequestPos, (arg->argSuffix != strNULL) ? arg->argSuffix : arg->argMsgField);
}
static void
WriteInitArgValue(FILE *file, argument_t *arg)
{
fprintf(file, "\n");
fprintf(file, "\tOutP->%s = %s;\n\n", arg->argMsgField, arg->argVarName);
}
/*
* Calculate the size of a variable-length message field.
*/
static void
WriteArgSize(FILE *file, argument_t *arg)
{
ipc_type_t *ptype = arg->argType;
int bsize = ptype->itElement->itTypeSize;
argument_t *count = arg->argCount;
/* If the base type size of the data field isn`t a multiple of 4,
we have to round up. */
if (bsize % itWordAlign != 0)
fprintf(file, "_WALIGN_");
/* Here, we generate ((value + %d) & ~%d). We have to put two (( at the
* the beginning.
*/
fprintf(file, "((");
if (bsize > 1)
fprintf(file, "%d * ", bsize);
if (ptype->itString || !akCheck(count->argKind, akbVarNeeded))
/* get count from descriptor in message */
fprintf(file, "OutP->%s", count->argMsgField);
else
/* get count from argument */
fprintf(file, "%s", count->argVarName);
/*
* If the base type size is not a multiple of sizeof(natural_t),
* we have to round up.
*/
if (bsize % sizeof(natural_t) != 0)
fprintf(file, " + %d) & ~%d)", (int)sizeof(natural_t)-1, (int)sizeof(natural_t)-1);
else
fprintf(file, "))");
}
/*
* Adjust message size and advance reply pointer.
* Called after packing a variable-length argument that
* has more arguments following.
*/
static void
WriteAdjustMsgSize(FILE *file, argument_t *arg)
{
routine_t *rt = arg->argRoutine;
ipc_type_t *ptype = arg->argType;
/* There are more Out arguments. We need to adjust msgh_size
and advance OutP, so we save the size of the current field
in msgh_size_delta. */
fprintf(file, "\tmsgh_size_delta = ");
WriteArgSize(file, arg);
fprintf(file, ";\n");
if (rt->rtNumReplyVar == 1) {
/* We can still address the message header directly. Fill
in the size field. */
fprintf(file, "\tOutP->Head.msgh_size = ");
rtMinReplySize(file, rt, "Reply");
fprintf(file, " + msgh_size_delta;\n");
}
else if (arg->argReplyPos == 0) {
/* First variable-length argument. The previous msgh_size value
is the minimum reply size. */
fprintf(file, "\tmsgh_size = ");
rtMinReplySize(file, rt, "Reply");
fprintf(file, " + msgh_size_delta;\n");
}
else
fprintf(file, "\tmsgh_size += msgh_size_delta;\n");
fprintf(file, "\tOutP = (Reply *) ((pointer_t) OutP + msgh_size_delta - %d);\n", ptype->itTypeSize + ptype->itPadSize);
}
/*
* Calculate the size of the message. Called after the
* last argument has been packed.
*/
static void
WriteFinishMsgSize(FILE *file, argument_t *arg)
{
/* No more Out arguments. If this is the only variable Out
argument, we can assign to msgh_size directly. */
if (arg->argReplyPos == 0) {
fprintf(file, "\tOutP->Head.msgh_size = ");
rtMinReplySize(file, arg->argRoutine, "Reply");
fprintf(file, " + (");
WriteArgSize(file, arg);
fprintf(file, ");\n");
}
else {
fprintf(file, "\tmsgh_size += ");
WriteArgSize(file, arg);
fprintf(file, ";\n");
}
}
/*
* Handle reply arguments - fill in message types and copy arguments
* that need to be copied.
*/
static void
WriteReplyArgs(FILE *file, routine_t *rt)
{
argument_t *arg;
argument_t *lastVarArg;
/*
* 1. The Kernel Processed Data
*/
for (arg = rt->rtArgs; arg != argNULL; arg = arg->argNext)
if (akCheckAll(arg->argKind, akbReturnSnd|akbReturnKPD))
(*arg->argKPD_Pack)(file, arg);
/*
* 2. The Data Stream
*/
lastVarArg = argNULL;
for (arg = rt->rtArgs; arg != argNULL; arg = arg->argNext) {
/*
* Adjust message size and advance message pointer if
* the last request argument was variable-length and the
* request position will change.
*/
if (lastVarArg != argNULL &&
lastVarArg->argReplyPos < arg->argReplyPos) {
WriteAdjustMsgSize(file, lastVarArg);
lastVarArg = argNULL;
}
if (akCheckAll(arg->argKind, akbReturnSnd|akbReturnBody|akbVarNeeded))
WritePackArgValueNormal(file, arg);
else if (akCheckAll(arg->argKind, akbReturnSnd|akbReturnBody|akbVariable))
WritePackArgValueVariable(file, arg);
if (akCheck(arg->argKind, akbReplyCopy))
WriteCopyArgValue(file, arg);
if (akCheck(arg->argKind, akbReplyInit))
WriteInitArgValue(file, arg);
/*
* Remember whether this was variable-length.
*/
if (akCheckAll(arg->argKind, akbReturnSnd|akbReturnBody|akbVariable))
lastVarArg = arg;
}
/*
* Finish the message size.
*/
if (lastVarArg != argNULL)
WriteFinishMsgSize(file, lastVarArg);
}
static void
WriteFieldDecl(FILE *file, argument_t *arg)
{
if (akCheck(arg->argKind, akbSendKPD) ||
akCheck(arg->argKind, akbReturnKPD))
WriteFieldDeclPrim(file, arg, FetchKPDType);
else
WriteFieldDeclPrim(file, arg, FetchServerType);
}
static void
InitKPD_Disciplines(argument_t *args)
{
argument_t *arg;
extern void KPD_noop(FILE *file, argument_t *arg);
extern void KPD_error(FILE *file, argument_t *arg);
extern void WriteTemplateKPD_port(FILE *file, argument_t *arg, boolean_t in);
extern void WriteTemplateKPD_ool(FILE *file, argument_t *arg, boolean_t in);
extern void WriteTemplateKPD_oolport(FILE *file, argument_t *arg, boolean_t in);
/*
* WriteInitKPD_port, WriteKPD_port, WriteExtractKPD_port,
* WriteInitKPD_ool, WriteKPD_ool, WriteExtractKPD_ool,
* WriteInitKPD_oolport, WriteKPD_oolport, WriteExtractKPD_oolport
* are local to this module (which is the reason why this initialization
* takes place here rather than in utils.c).
* Common routines for user and server will be established SOON, and
* all of them (including the initialization) will be transfert to
* utils.c
* All the KPD disciplines are defaulted to be KPD_error().
* Note that akbSendKPD and akbReturnKPd are not exclusive,
* because of inout type of parameters.
*/
for (arg = args; arg != argNULL; arg = arg->argNext)
if (akCheck(arg->argKind, akbSendKPD|akbReturnKPD))
switch (arg->argKPD_Type) {
case MACH_MSG_PORT_DESCRIPTOR:
if akCheck(arg->argKind, akbSendKPD) {
arg->argKPD_Extract =
(IS_MULTIPLE_KPD(arg->argType)) ? WriteExtractKPD_port : WriteExtractArgValue;
arg->argKPD_TypeCheck = WriteTCheckKPD_port;
}
if akCheck(arg->argKind, akbReturnKPD) {
arg->argKPD_Template = WriteTemplateKPD_port;
arg->argKPD_Init = WriteInitKPD_port;
arg->argKPD_Pack = WriteKPD_port;
}
break;
case MACH_MSG_OOL_DESCRIPTOR:
if akCheck(arg->argKind, akbSendKPD) {
arg->argKPD_Extract =
(IS_MULTIPLE_KPD(arg->argType)) ? WriteExtractKPD_ool : WriteExtractArgValue;
arg->argKPD_TypeCheck = WriteTCheckKPD_ool;
}
if akCheck(arg->argKind, akbReturnKPD) {
arg->argKPD_Template = WriteTemplateKPD_ool;
arg->argKPD_Init = WriteInitKPD_ool;
arg->argKPD_Pack = WriteKPD_ool;
}
break;
case MACH_MSG_OOL_PORTS_DESCRIPTOR:
if akCheck(arg->argKind, akbSendKPD) {
arg->argKPD_Extract =
(IS_MULTIPLE_KPD(arg->argType)) ? WriteExtractKPD_oolport : WriteExtractArgValue;
arg->argKPD_TypeCheck = WriteTCheckKPD_oolport;
}
if akCheck(arg->argKind, akbReturnKPD) {
arg->argKPD_Template = WriteTemplateKPD_oolport;
arg->argKPD_Init = WriteInitKPD_oolport;
arg->argKPD_Pack = WriteKPD_oolport;
}
break;
default:
printf("MiG internal error: type of kernel processed data unknown\n");
exit(1);
} /* end of switch */
}
static void WriteStringTerminatorCheck(FILE *file, routine_t *rt)
{
// generate code to verify that the length of a C string is not greater than the size of the
// buffer in which it is stored.
argument_t *argPtr;
int msg_limit_calculated = FALSE;
int found_string_argument = FALSE;
int variable_length_args_present = (rt->rtMaxRequestPos > 0);
// scan through arguments to see if there are any strings
for (argPtr = rt->rtArgs; argPtr != NULL; argPtr = argPtr->argNext) {
if ((argPtr->argKind & akbRequest) && argPtr->argType->itString) {
found_string_argument = TRUE;
break;
}
}
if (found_string_argument) {
// create a new scope, for local variables
fputs("#if __MigTypeCheck\n" "\t" "{" "\n", file);
for (argPtr = rt->rtArgs; argPtr != NULL; argPtr = argPtr->argNext) {
if ((argPtr->argKind & akbRequest) && argPtr->argType->itString) {
//fprintf(stderr, "### found itString: variable name = %s, max length = %d\n", argPtr->argName, argPtr->argType->itNumber);
if (!msg_limit_calculated) {
msg_limit_calculated = TRUE; // only need to do this once
fputs("\t\t" "char * msg_limit = ((char *) In0P) + In0P->Head.msgh_size;\n", file);
if (IsKernelServer) {
fputs("#if __MigKernelSpecificCode\n", file);
fputs("\t\t" "size_t strnlen_limit;" "\n", file);
fputs("#else\n", file);
}
fputs("\t\t" "size_t memchr_limit;" "\n", file);
if (IsKernelServer) {
fputs("#endif /* __MigKernelSpecificCode */" "\n", file);
}
fputc('\n', file);
}
// I would really prefer to use strnlen() here, to ensure that the byte scanning logic does not extend beyond
// the end of the buffer, but it's not necessarily guaranteed to be available. Instead, I'll use memchr(),
// and let it look for the terminating null byte.
// (later...)
// It turns out that the kernel does not have memchr() available, but strnlen() IS available, so we'll just
// have to emit some conditional code to use the appropriate runtime environment scanning function.
//
if (IsKernelServer) {
fputs("#if __MigKernelSpecificCode\n", file);
fputs("\t\t" "strnlen_limit = min((msg_limit - ", file);
// If there are variable-length arguments within the message, the proper (adjusted)
// pointers must be used to access those strings
fprintf(file, "In%dP->%s), %d);" "\n", (variable_length_args_present ? argPtr->argRequestPos : 0), argPtr->argName, argPtr->argType->itNumber);
fputs("\t\t" "if (", file);
fprintf(file, "( strnlen(In%dP->%s, strnlen_limit) >= %d + 1 )", (variable_length_args_present ? argPtr->argRequestPos : 0), argPtr->argName, argPtr->argType->itNumber);
fputs(")" "\n" "\t\t\t" "return MIG_BAD_ARGUMENTS; // string length exceeds buffer length!" "\n", file);
fputs("#else\n", file);
}
// If there are variable-length arguments within the message, the proper (adjusted)
// pointers must be used to access those strings
fprintf(file, "\t\t" "memchr_limit = min((msg_limit - In%dP->%s), %d);" "\n", (variable_length_args_present ? argPtr->argRequestPos : 0), argPtr->argName, argPtr->argType->itNumber);
fputs("\t\t" "if (", file);
fprintf(file, "( memchr(In%dP->%s, '\\0', memchr_limit) == NULL )", (variable_length_args_present ? argPtr->argRequestPos : 0), argPtr->argName);
fputs(")" "\n" "\t\t\t" "return MIG_BAD_ARGUMENTS; // string length exceeds buffer length!" "\n", file);
if (IsKernelServer) {
fputs("#endif /* __MigKernelSpecificCode */" "\n", file);
}
}
}
fputs("\t" "}" "\n" "#endif" "\t" "/* __MigTypeCheck */" "\n\n", file); // terminate new scope
}
return;
}
static void
WriteOOLSizeCheck(FILE *file, routine_t *rt)
{
/* Emit code to validate the actual size of ool data vs. the reported size */
argument_t *argPtr;
boolean_t openedTypeCheckConditional = FALSE;
// scan through arguments to see if there are any ool data blocks
for (argPtr = rt->rtArgs; argPtr != NULL; argPtr = argPtr->argNext) {
if (akCheck(argPtr->argKind, akbSendKPD)) {
ipc_type_t *it = argPtr->argType;
boolean_t multiple_kpd = IS_MULTIPLE_KPD(it);
char string[MAX_STR_LEN];
boolean_t test;
argument_t *argCountPtr;
char *tab;
if (argPtr->argKPD_Type == MACH_MSG_OOL_DESCRIPTOR) {
if (multiple_kpd) {
if ( !openedTypeCheckConditional ) {
openedTypeCheckConditional = TRUE;
fputs("#if __MigTypeCheck\n", file);
}
WriteKPD_Iterator(file, TRUE, FALSE, argPtr, TRUE);
tab = "\t";
sprintf(string, "ptr->");
test = !it->itVarArray && !it->itElement->itVarArray;
it = it->itElement; // point to element descriptor, so size calculation is correct
argCountPtr = argPtr->argSubCount;
} else {
tab = "";
sprintf(string, "In%dP->%s.", argPtr->argRequestPos, argPtr->argMsgField);
test = !it->itVarArray;
argCountPtr = argPtr->argCount;
}
if (!test) {
int multiplier = (argCountPtr->argMultiplier > 1 || it->itSize > 8) ? argCountPtr->argMultiplier * it->itSize / 8 : 1;
if ( !openedTypeCheckConditional ) {
openedTypeCheckConditional = TRUE;
fputs("#if __MigTypeCheck\n", file);
}
fprintf(file, "\t%s" "if (%ssize ", tab, string);
if (multiplier > 1)
fprintf(file, "/ %d ", multiplier);
fprintf(file,"!= In%dP->%s%s", argCountPtr->argRequestPos, argCountPtr->argVarName, multiple_kpd ? "[i]" : "");
if (it->itOOL_Number) {
fprintf(file," || In%dP->%s%s > %d", argCountPtr->argRequestPos,
argCountPtr->argVarName, multiple_kpd ? "[i]" : "", it->itOOL_Number);
}
fprintf(file,")\n");
fprintf(file, "\t\t%s" "return MIG_TYPE_ERROR;\n", tab);
}
if (multiple_kpd)
fprintf(file, "\t }\n\t}\n");
} else if (argPtr->argKPD_Type == MACH_MSG_OOL_PORTS_DESCRIPTOR) {
if (multiple_kpd) {
if ( !openedTypeCheckConditional ) {
openedTypeCheckConditional = TRUE;
fputs("#if __MigTypeCheck\n", file);
}
WriteKPD_Iterator(file, TRUE, FALSE, argPtr, TRUE);
tab = "\t";
sprintf(string, "ptr->");
test = !it->itVarArray && !it->itElement->itVarArray;
it = it->itElement; // point to element descriptor, so size calculation is correct
argCountPtr = argPtr->argSubCount;
} else {
tab = "";
sprintf(string, "In%dP->%s.", argPtr->argRequestPos, argPtr->argMsgField);
test = !it->itVarArray;
argCountPtr = argPtr->argCount;
}
if (!test) {
if ( !openedTypeCheckConditional ) {
openedTypeCheckConditional = TRUE;
fputs("#if __MigTypeCheck\n", file);
}
fprintf(file, "\t%s" "if (%scount ", tab, string);
fprintf(file,"!= In%dP->%s%s", argCountPtr->argRequestPos, argCountPtr->argVarName, multiple_kpd ? "[i]" : "");
if (it->itOOL_Number) {
fprintf(file," || In%dP->%s%s > %d", argCountPtr->argRequestPos,
argCountPtr->argVarName, multiple_kpd ? "[i]" : "", it->itOOL_Number);
}
fprintf(file,")\n");
fprintf(file, "\t\t%s" "return MIG_TYPE_ERROR;\n", tab);
}
if (multiple_kpd)
fprintf(file, "\t }\n\t}\n");
}
}
}
if ( openedTypeCheckConditional )
fputs("#endif" "\t" "/* __MigTypeCheck */" "\n\n", file);
}
void
WriteCheckRequest(FILE *file, routine_t *rt)
{
int i;
/* initialize the disciplines for the handling of KPDs */
InitKPD_Disciplines(rt->rtArgs);
fprintf(file, "\n");
fprintf(file, "#if ( __MigTypeCheck ");
if (CheckNDR)
fprintf(file, "|| __NDR_convert__ ");
fprintf(file, ")\n");
fprintf(file, "#if __MIG_check__Request__%s_subsystem__\n", SubsystemName);
fprintf(file, "#if !defined(__MIG_check__Request__%s_t__defined)\n", rt->rtName);
fprintf(file, "#define __MIG_check__Request__%s_t__defined\n", rt->rtName);
if (CheckNDR && akCheck(rt->rtNdrCode->argKind, akbRequest)) {
WriteList(file, rt->rtArgs, WriteRequestNDRConvertIntRepArgDecl, akbSendNdr, "", "");
WriteList(file, rt->rtArgs, WriteRequestNDRConvertCharRepArgDecl, akbSendNdr, "", "");
WriteList(file, rt->rtArgs, WriteRequestNDRConvertFloatRepArgDecl, akbSendNdr, "", "");
}
fprintf(file, "\n");
fprintf(file, "mig_internal kern_return_t __MIG_check__Request__%s_t(__attribute__((__unused__)) __Request__%s_t *In0P", rt->rtName, rt->rtName);
for (i = 1; i <= rt->rtMaxRequestPos; i++)
fprintf(file, ", __attribute__((__unused__)) __Request__%s_t **In%dPP", rt->rtName, i);
fprintf(file, ")\n{\n");
fprintf(file, "\n\ttypedef __Request__%s_t __Request;\n", rt->rtName);
for (i = 1; i <= rt->rtMaxRequestPos; i++)
fprintf(file, "\t__Request *In%dP;\n", i);
if (rt->rtNumRequestVar > 0) {
fprintf(file, "#if\t__MigTypeCheck\n");
fprintf(file, "\tunsigned int msgh_size;\n");
fprintf(file, "#endif\t/* __MigTypeCheck */\n");
}
if (rt->rtMaxRequestPos > 0)
fprintf(file, "\tunsigned int msgh_size_delta;\n");
if (rt->rtNumRequestVar > 0 || rt->rtMaxRequestPos > 0)
fprintf(file, "\n");
WriteCheckHead(file, rt);
WriteList(file, rt->rtArgs, WriteTypeCheck, akbSendKPD, "\n", "\n");
{
argument_t *arg, *lastVarArg;
lastVarArg = argNULL;
for (arg = rt->rtArgs; arg != argNULL; arg = arg->argNext) {
if (lastVarArg != argNULL &&
lastVarArg->argRequestPos < arg->argRequestPos) {
WriteAdjustRequestMsgPtr(file, lastVarArg);
lastVarArg = argNULL;
}
if (akCheckAll(arg->argKind, akbSendRcv|akbSendBody)) {
if (akCheck(arg->argKind, akbVariable)) {
WriteCheckMsgSize(file, arg);
lastVarArg = arg;
}
}
}
}
if (CheckNDR && akCheck(rt->rtNdrCode->argKind, akbRequest)) {
fprintf(file, "#if\t");
WriteList(file, rt->rtArgs, WriteRequestNDRConvertIntRepArgCond, akbSendNdr, " || \\\n\t", "\n");
fprintf(file, "\tif (In0P->NDR.int_rep != NDR_record.int_rep) {\n");
WriteList(file, rt->rtArgs, WriteRequestNDRConvertIntRepArgUse, akbSendNdr, "", "");
fprintf(file, "\t}\n#endif\t/* defined(__NDR_convert__int_rep...) */\n\n");
WriteOOLSizeCheck(file, rt);
fprintf(file, "#if\t");
WriteList(file, rt->rtArgs, WriteRequestNDRConvertCharRepArgCond, akbSendNdr, " || \\\n\t", "\n");
fprintf(file, "\tif (In0P->NDR.char_rep != NDR_record.char_rep) {\n");
WriteList(file, rt->rtArgs, WriteRequestNDRConvertCharRepArgUse, akbSendNdr, "", "");
fprintf(file, "\t}\n#endif\t/* defined(__NDR_convert__char_rep...) */\n\n");
fprintf(file, "#if\t");
WriteList(file, rt->rtArgs, WriteRequestNDRConvertFloatRepArgCond, akbSendNdr, " || \\\n\t", "\n");
fprintf(file, "\tif (In0P->NDR.float_rep != NDR_record.float_rep) {\n");
WriteList(file, rt->rtArgs, WriteRequestNDRConvertFloatRepArgUse, akbSendNdr, "", "");
fprintf(file, "\t}\n#endif\t/* defined(__NDR_convert__float_rep...) */\n\n");
} else {
WriteOOLSizeCheck(file, rt);
}
WriteStringTerminatorCheck(file, rt);
fprintf(file, "\treturn MACH_MSG_SUCCESS;\n");
fprintf(file, "}\n");
fprintf(file, "#endif /* !defined(__MIG_check__Request__%s_t__defined) */\n", rt->rtName);
fprintf(file, "#endif /* __MIG_check__Request__%s_subsystem__ */\n", SubsystemName);
fprintf(file, "#endif /* ( __MigTypeCheck ");
if (CheckNDR)
fprintf(file, "|| __NDR_convert__ ");
fprintf(file, ") */\n");
fprintf(file, "\n");
}
void
WriteCheckRequestCall(FILE *file, routine_t *rt)
{
int i;
fprintf(file, "\n");
fprintf(file, "#if\tdefined(__MIG_check__Request__%s_t__defined)\n", rt->rtName);
fprintf(file, "\tcheck_result = __MIG_check__Request__%s_t((__Request *)In0P", rt->rtName);
for (i = 1; i <= rt->rtMaxRequestPos; i++)
fprintf(file, ", (__Request **)&In%dP", i);
fprintf(file, ");\n");
fprintf(file, "\tif (check_result != MACH_MSG_SUCCESS)\n");
fprintf(file, "\t\t{ MIG_RETURN_ERROR(OutP, check_result); }\n");
fprintf(file, "#endif\t/* defined(__MIG_check__Request__%s_t__defined) */\n", rt->rtName);
fprintf(file, "\n");
}
void
WriteCheckRequests(FILE *file, statement_t *stats)
{
statement_t *stat;
for (stat = stats; stat != stNULL; stat = stat->stNext)
if (stat->stKind == skRoutine)
WriteCheckRequest(file, stat->stRoutine);
}
static void
WriteRoutine(FILE *file, routine_t *rt)
{
/* Declare the server work function: */
if (ServerHeaderFileName == strNULL)
WriteServerRoutine(file, rt);
fprintf(file, "\n");
fprintf(file, "/* %s %s */\n", rtRoutineKindToStr(rt->rtKind), rt->rtName);
fprintf(file, "mig_internal novalue _X%s\n", rt->rtName);
if (BeAnsiC) {
fprintf(file, "\t(mach_msg_header_t *InHeadP, mach_msg_header_t *OutHeadP)\n");
}
else {
fprintf(file, "#if\t%s\n", NewCDecl);
fprintf(file, "\t(mach_msg_header_t *InHeadP, mach_msg_header_t *OutHeadP)\n");
fprintf(file, "#else\n");
fprintf(file, "\t(InHeadP, OutHeadP)\n");
fprintf(file, "\tmach_msg_header_t *InHeadP, *OutHeadP;\n");
fprintf(file, "#endif\t/* %s */\n", NewCDecl);
}
fprintf(file, "{\n");
WriteStructDecl(file, rt->rtArgs, WriteFieldDecl, akbRequest, "Request", rt->rtSimpleRequest, TRUE, rt->rtServerImpl, FALSE);
fprintf(file, "\ttypedef __Request__%s_t __Request;\n", rt->rtName);
fprintf(file, "\ttypedef __Reply__%s_t Reply __attribute__((unused));\n\n", rt->rtName);
/*
* Define a Minimal Reply structure to be used in case of errors
*/
fprintf(file, "\t/*\n");
fprintf(file, "\t * typedef struct {\n");
fprintf(file, "\t * \tmach_msg_header_t Head;\n");
fprintf(file, "\t * \tNDR_record_t NDR;\n");
fprintf(file, "\t * \tkern_return_t RetCode;\n");
fprintf(file, "\t * } mig_reply_error_t;\n");
fprintf(file, "\t */\n");
fprintf(file, "\n");
WriteVarDecls(file, rt);
if (IsKernelServer) {
fprintf(file, "#if\t__MigKernelSpecificCode\n");
WriteList(file, rt->rtArgs, WriteTemplateDeclOut, akbReturnKPD, "\n", "\n");
fprintf(file, "#else\n");
}
WriteList(file, rt->rtArgs, WriteTemplateDeclIn, akbReturnKPD, "\n", "\n");
if (IsKernelServer) {
fprintf(file, "#endif /* __MigKernelSpecificCode */\n");
}
WriteRetCode(file, rt->rtRetCode);
WriteList(file, rt->rtArgs, WriteLocalVarDecl, akbVarNeeded | akbServerArg, ";\n", ";\n\n");
WriteApplMacro(file, "Rcv", "Declare", rt);
WriteApplMacro(file, "Rcv", "Before", rt);
if (rt->rtRetCArg != argNULL && !rt->rtSimpleRequest) {
WriteRetCArgCheckError(file, rt);
if (rt->rtServerImpl)
WriteCheckTrailerHead(file, rt, FALSE);
WriteServerCall(file, rt, WriteConditionalCallArg);
WriteRetCArgFinishError(file, rt);
}
WriteCheckRequestCall(file, rt);
WriteCheckRequestTrailerArgs(file, rt);
/*
* Initialize the KPD records in the Reply structure with the
* templates. We do this beforehand because the call to the procedure
* will overwrite some of the values (after the call it would be impossible
* to initialize the KPD records from the static Templates, because we
* would lose data).
*/
WriteList(file, rt->rtArgs, WriteInitKPDValue, akbReturnKPD, "\n", "\n");
WriteList(file, rt->rtArgs, WriteExtractArg, akbNone, "", "");
if (UseEventLogger)
WriteLogMsg(file, rt, LOG_SERVER, LOG_REQUEST);
WriteServerCall(file, rt, WriteServerCallArg);
WriteReverseList(file, rt->rtArgs, WriteDestroyArg, akbDestroy, "", "");
/*
* For one-way routines, it doesn`t make sense to check the return
* code, because we return immediately afterwards. However,
* kernel servers may want to deallocate port arguments - and the
* deallocation must not be done if the return code is not KERN_SUCCESS.
*/
if (rt->rtOneWay || rt->rtNoReplyArgs) {
if (IsKernelServer) {
fprintf(file,"#if\t__MigKernelSpecificCode\n");
if (rtCheckMaskFunction(rt->rtArgs, akbSendKPD, CheckDestroyPortArg)) {
WriteCheckReturnValue(file, rt);
}
WriteReverseList(file, rt->rtArgs, WriteDestroyPortArg, akbSendKPD, "", "");
fprintf(file,"#endif /* __MigKernelSpecificCode */\n");
}
/* although we have an empty reply, we still have to make sure that
some fields such as NDR get properly initialized */
if (!rt->rtOneWay)
WriteList(file, rt->rtArgs, WriteInitArgValue, akbReplyInit, "\n", "\n");
}
else {
WriteCheckReturnValue(file, rt);
if (IsKernelServer) {
fprintf(file,"#if\t__MigKernelSpecificCode\n");
WriteReverseList(file, rt->rtArgs, WriteDestroyPortArg, akbSendKPD, "", "");
fprintf(file,"#endif /* __MigKernelSpecificCode */\n");
}
WriteReplyArgs(file, rt);
WriteReplyInit(file, rt);
if (!rt->rtSimpleReply)
fprintf(file, "\tOutP->msgh_body.msgh_descriptor_count = %d;\n", rt->rtReplyKPDs);
}
if (UseEventLogger)
WriteLogMsg(file, rt, LOG_SERVER, LOG_REPLY);
WriteApplMacro(file, "Rcv", "After", rt);
fprintf(file, "}\n");
}
void
WriteServer(FILE *file, statement_t *stats)
{
statement_t *stat;
WriteProlog(file, stats);
if (BeAnsiC)
WriteForwardDeclarations(file, stats);
for (stat = stats; stat != stNULL; stat = stat->stNext)
switch (stat->stKind) {
case skRoutine:
WriteCheckRequest(file, stat->stRoutine);
WriteRoutine(file, stat->stRoutine);
break;
case skIImport:
case skImport:
case skSImport:
case skDImport:
case skUImport:
break;
default:
fatal("WriteServer(): bad statement_kind_t (%d)",
(int) stat->stKind);
}
WriteDispatcher(file, stats);
}